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Chapter 4

Lamb’s Problem: From Weyl’s Integral
to Cagniard—de Hoop’s Method

Aki and Richards [1980]; Chapter 6.

The goal of this chapter is to investigate the interaction of a spherical wavefront with a planar
boundary. Obviously, in the limit of short wavelengths, and in the near field, it describes the case
of a point source close to the Earth’s surface.

1.  Weyl’s Integral

This problem considers a monochromatic spherical wave whose scalar potential ¢ can be written

1 R .
¢(x,y,z;t) = E.exp(,‘wTJ_ e—rmr (1)

Note that we will consider here both a spherical and a cylindrical system of coordinates, with

R=\TTyrd;  r=NES @

Following the results in Chapter 2, we will consider a Green’s function, such that [A&R (6.2)]
1 9*¢ 3
Q) o ‘C—z' ‘a'i“ = 4x 5()() € o (3)

Along the lines of Chapter 3, we consider the 3-dimensional Fourier transform

1 too oo oo ik-x it 3
¢ (xs Y, 2, 'r) = (2%)3 J-_oo j_oo j_m ¢' (k.\" k)’s kz) e - e ~d’k (4)
then ¢ has to satisfy
- 4
phokpbd =l o ®
since 1 is the Fourier transform of §(x). We thus come to the conclusion that
| oR | +oo +oo +oo exp (i k- x)
" exp(f C) = o5 L,, dk, j_w dy | am— e (6)

This is a perfectly legitimate expression, but on the other hand, we know that physically, only cer-
tain combinations of {k., k,, k,} should contribute to the integral, since the vector k must satisfy
the wave equation:
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w
K =kt kg k= — (7
For this purpose, we focus on the integral over k. :

o er'k;z

- dk 8
o AR —aP [P T b

Ik kys2) = |

In order to compute this integral, we first deform it in the complex plane (assuming that k, is a
fully complex variable), and in addition, we introduce a small negative imaginary value to ¢, so
that it becomes

c=c(1-ig) 0<e<x1 )

E CJ'E(H'

-(1+ie)

[The meaning of this transformation is to take into account a small amount of attenuation. In the
end, the results can be taken in the limit £ — 0.]

. Assuming first that 2 >0,
we then compute the integral I along the contour I' shown on Figure 1. Along the half-cir-
cle, we set k, = kg eV, y varying from O to 7, and let kg — oco. For sufficiently large ko,
the modulus of the denominator grows like k3, whereas the numerator is at most of order kg
(this is where z>0 is crucial so that the exponential does not blow up). Hence the contribu-
tion of the arc to the integral I goes to 0 as ky — co.

The integrand in [ has one pole k'D inside the contour, where the denominator can be writ-

ten
K2 = (@t -k —k2) = (k, — kD) (k, + kD) (10)
and by application of the residue theorem, the integral / then becomes:
I(kx,ky;z)=2i;'r-ﬂ%§—2) (11)
We now change the notation (slightly !) by setting
Kkl =iy (12a)
Because we have taken £ >0 in (9), it follows that
Re(y) > 0 (12b)
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There follows from (11) that

g, kys 2) = 7 22E7D) (13)
¥

The meaning of (13) is that there is, in (8), and hence in (6), a contribution for only one
value of k,, namely that which satisfies the wave equation (7).

This brings in the very powerful concept of

DUALITY BETWEEN POLES OF INTEGRATION
AND INDIVIDUAL SEISMIC PHASES

—  Note on Figure |

. First, that it has been drawn in the case of a "homogeneous" wave, where the pole is
(nearly; except for £) on the real axis, corresponding to

2
P o_ w
k; = = k3 — k3 (14)

In the inhomogeneous case where (k% + ki > w?/ ¢?), then the pole is (nearly) on the imag-
inary axis (shown as the asterisk on Figure 1), and given by

2
kf =i‘\}k§+k§,~% (15)

. There is a second pole (shown as the open circle on the Figure), but with £>0, it lies out-
side the contour I" and does not contribute to I.

o If we now consider negative values of z, the exponential along the half-circle will blow up
and the contribution of the arc is no longer negligible. We then take the contour I'’, sym-
metric of I" with respect to the real axis, which will have only one pole, namely — k;_o (open
circle on Figure 1). If we take the same definition of ¥, namely

602

o=t Re(y)>0, (16)
C

the pole is now at (—iy ) and the residue theorem leads to
exp(?/z) _ exp(yz) a7
—2iy ¥

(the extra minus sign comes from the fact that the contour is now traveled clockwise), so
that in all cases, (13; z>0) or (17; z<0), I can be written

exp(—7|z|) (18)
¥

I (kesky;2) = =2ix

Iy ky32) = 7

which leads to
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1 jm_R 1 Yoo Yoo er‘(k_,.\'+k_,.y)—r|z|
—_— 7 = = dkj dk. [9
5 e LO x| dk, - (19

with, again, y given by (16).

THIS CONSTITUTES WEYL’s DECOMPOSITION OF
A SPHERICAL WAVE INTO PLANE WAVES

Note that it involves both

HOMOGENEOUS ("Body") and INHOMOGENEOUS ("Surface") waves

2.  Sommerfeld’s Decomposition

Sommerfeld’s decomposition consists of transforming (19) into a single integration of cylindrical
waves. We set

X = rcosg; y = rsing (20)
and
k., = k, cos¢’ ky, = k. sing’ 21)
(Note that the angle ¢ has nothing to do with the potential ¢ in (1)), and substitute into (19)
1 ei LS r"’f’-‘ dk, .[2" gl Grrcos@-¢')=rls| g4 (22)
R 2xdo ¥y 0

(Note that y is independent of ¢” and thus can be taken out of the last integral.)

We recall [Abramowitz and Stegun, (9.1.18) p. 360]

2z
Jo exp(ixcos¢)dg = 2z Jy(x) (23)
where J is the Bessel function of order (. Hence
1 28 ook, Jo(k, ¥ —ylz
L :j » Jo (k. 1) exp( ?IZI)(H(, (24)
R 0 y
with, again, (16) expressed in cylindrical polars,
al
p¥ = !6,2.——2; Re(y)>0, (16r)
c

We have decomposed the spherical wave onto "cylindrical waves" (see end of Chapter 2), attenu-
ated along z, and weighted by k. /7.

This result (24) is known as Sommerfeld’s Integral |
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3. Interaction with a discontinuity.

We now attack the problem of the interaction of a spherical wave such as (1) with a planar discon-
tinuity, by making use of a Sommerfeld decomposition (16).

Before we can do so, we shall prove a

LEMMA

For a surface of discontinuity perpendicular to Oz, the reflection / transmission coefficients of
cylindrical waves of wavenumber k, are the same as those of plane waves of horizontal slow-
ness

k,
= — 25
r=- (23)
PROOF
We consider a cylindrical wave whose potential has the form (not writing the time factor
e—i (01):
1 ok +oo o Jo(k, ¥ -
B e J‘ r Jo (k. 1) exp( ylzl)-dk,. (24)
R 0 ¥y
By reading (23) backwards, we can expand it as
1 ek 1 free k, ik reos(p—9¢")—v|z| ’
E e ¢ = ﬁ JO '; (H{,. J(] & d@ (22)
or even, if we consider a cartesian coordinate system, as
I ‘-ﬂ 1 oo s ei(k_...r+k1\.y)—r|z|
ze e =0 Lx dk | dk,- . (19)

For each of combination of k, and k, in (19), we have a plane wave of amplitude

1 eithex+hkyy) =7zl (25)

2ry

which interacts with a planar boundary perpendicular to €,. We can always rotate the {x, y}
frame into a new frame {X,Y} in which the vector k will have no ky component. Then its

component ky becomes
ky = \/ kZ+ k3 = k, (26)

and the plane wave can be written as

_I_kaxxu}’lf"-l 27
2ry
That plane wave, with a horizontal wavenumber ky , and hence a slowness p=ky/w =k, / o,
interacts with a boundary perpendicular to the direction &,. According to Chapter 3, it generates
reflected and transmitted plane waves, with appropriate amplitudes. For example, in the case of
an incident P and a reflected P, we generate a plane wave of amplitude




EARTH 462 Chapter 4 - Page 6 -

L elkxX+rlzel = pp. ! el ket kyy)+rlzl (28) t

73
2ry 2y

To obtain the full potential of the reflected wave, we must now integrate back over k, and k,

+oo +o0 . 1 . ~
J'_m dky | dk, PP i Nyl (29)

We then implement the change of variables

X = rcosg; y = rsing (20)
and
k., = k, cos¢’ ky = k, sing’ (21)
to obtain
L PR ky ik, rcos(p—e¢)+vy|z|
IO dk, J'O ay’ PP 5 (30)

and because PP depends only on p, and hence on k.., it is independent of ¢’, and so the whole

AT "
term PP - > " can be taken out of the ¢" integral, leading to
Yy
+oo s k. ) e
[k, PP 2:;;/ erlel jo glkireos@=9) . gy 31

or, remembering (23)

P rlzl. dg, (32)

J‘+°o Lok Sy (kpr) p
0 4

which is the integral of the individual terms in (24), with just the opposite dependence on z,
and weighted by the coefficient PP, computed for the slowness (23).
Q.E.D.

EVERYTHING TAKES PLACE AS IF THE "CYLINDRICAL WAVE" (24)
HAD REFLECTED WITH THE PLANAR COEFFICIENT PP

The derivation of this important lemma is often overlooked and the result taken for
granted.

1 In these formulz, PP must be a reflection coefficient for POTENTIALS, but this does not change anything to the argu-
ment
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. Reflection at a plane boundary
We now change the notation (again), and shift the boundary to z = 0, while we move the source to
z2=2zp< 0.

ZA

® o
\(/Z
We consider an incident wave in medium 1 with potential
1 R +oo o ;
PR = & ﬂxv(a— - ") B L ~ Jolker) emrlemal.omior . gy, (33)
[
with
i
Y= =i &3—3’(?— 5 Re(y) > 0 (34)
1
We introduce the slowness p through
k= op (23)
yielding
oo Jo(wp’_)_e+fﬂ)|2"i’.|)|\,||fl2|2*p2 . 5
6(R,1) = _[ e o pdp (354)
0 —iw \1/a? - p?
or
— e 5 1) JO (w p r) +Hwé |Z*Z()| —i wt
¢ (R, 1) = .[0 ia)-—é_,—-e e ~dp (35h)
1
where we have introduced yet a new variable,
1 2
€ = o Re(§p) >0 (36)
1

For z =0 at the surface of discntinuity, this constitutes a decomposition in cylindrical waves,
weighted by the coefficient

i 2e PRl TE 37)

Applying the LEMMA, we infer that any wave resulting from the interaction with the boundary
can be written as a superposition of cylindrical waves, weighted by the appropriate refelction or
transmission coefficients. For example, the potential of the P — P reflected wave will be written
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as

¢ = fm r’ PP . gﬂ Ay (@pr) - e TOSEED) L gmiot gy (38) (A&R 6.12)
0 1

that of a transmitted P — P as

¢ =iw Jm Bp . §£ ~Jo(@pr) - e lelio—67) | p-iel dp (39) (A&R 6.13)
0 1

where

] g
& = —r % § Re (&) >0 (40)
253

In the case of CONVERTED waves, e.g., a P — S transmitted wave, we will have a potential

v =i J.:o ps . gﬁ ~Jo(@pr) - e toCi—ma) , ,-ier dp 41
1

1
M = ‘\f aad ol Re(17,) >0 (42)
B

while, for an § — P reflected wave, we would have

where

¢ =im J:o SP . % Jo(wpr) - e T@Mmatan, giot . g, (43)
I
where

m = it ol Re(n;) >0 (44)

Remarks about Formula (38)-(43)

— | The choice of parameters &, , &, 17, , 7, in the exponentials is straightforward: the coef-
ficient multiplying z, represents the propagation from the source, so it characterizes the
incident wave, while the multiplier of z represents the emerging wave, hence the various
combinations,

but

the coefficient in the denominator (in red in (43)) comes from the y term in the expan-
sion (6) of the incident wave before the reflection coefficients are applied, which itself
comes all the way from the residue theorem... Hence, THAT TERM 1S ALWAYS CHAR-
ACTERISTIC OF THE INCIDENT WAVE.
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(iif)

(i)

Because the various coeficients (PP et al.) depend heavily on p, the integration over p
in the integrals (38)—(43) is not trivial, and cannot be given an analytical form. This is
why we cannot expect that it would lead to the reconstruction of a nice spherical wave of
the form (1), even though an exponential of the form e 71061+ 20) 1ooks very much like
something radiating away from an image located at z =—zy. Yes, there is a kind of
reflected image of the source, but the wave coming from it is NOT spherical, since its
amplitude will be distorted as a function of p. In the case of a change of velocity (trans-
mission into the other medium, or conversion to S upon reflection), there is not even a
precise geometrical image, as is well known in optics.

The bottom line is, even though cylindrical waves appear to reflect/transmit while
remaining cyclindrical, this property does not extend to spherical waves.

Trying to perform J. dp for the reflected wave.

We consider here the further simplified case of the boundary between two liquids (so we
are no longer bothered by the velocities 3, and by the possibility of conversions). We thus
focus on a P — P reflection, whose potential will be given by (38):

¢P,r’eﬂ. = iw e iolr, J:o }511‘) . EP_ oy (wp]-) ‘ g‘ims‘l(z*'zu) . dp (38)
1

The fundamental problems are that (i) & will carry (at least for certain values of p) a real
part, so that the argument of the exponential will oscillate (and faster as w—0); (i) &
involves a complex square root, so that branch cuts will be present. As always in complex
calculus, one attempts to rely on the deformation of the integral contour, but then (iii), we
note that the integral extends only from O to + oo, not from —oco to +o0.

We first address the last point (iii), by noting that, at least, PP and &, are even in p. We
substitute the Bessel function for the Hankel ones:

1
Jo(x) = E[H((,U(x) + HY (x):l with H® (x) = —H" (%) (45)
[Abramowitz and Stegun, (9.1.39), p.361], obtaining

el % i r‘” P éﬁ CH wpr) - e T08E L g (46) (A&R 6.15)
o ]

Branch cuts

&, has two branch points at p = = —, and we have imposed Im (£;) > 0, so we take the

1
o
branch cut along the line Im (£,) = 0. Similarly for &, (note that even though &, does not
appear directly in the integrals (38) or (46), it is present in PP and thus its branch cuts will
affect them). Finally, the Hankel function of first kind Hé”(x) has a branch point at x =0
(see its behavior on Abramowitz and Stegun’s Figure (9.4)), so that we put a branch cut
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along p real negative. Hence the diagram of the integration contour on Page 204 of Aki &
Richards [1980], reproduced below.

204 REFLECTION AND REFRACTION OF SPHERICAL WAVES; LAMB'S PROBLEM

Imp 4

FIGURE 6.4

Branch cuts for &, &,, and p'/? in the
complex p-plane. The cuts are given by
Imé =0,Im¢, = 0;andRe p'* = 0
(this being the cut assumed in (6.16). In
fact, it is directly a branch cut for
H{(ewpr)). The integration path for
Pretl (see (6.17)) lies on the negative real
axis just above three cuts, and lies on
the positive real axis just below two
cuts.

(i)  The final challenge is to compute (46) taking into account the fast variation (with p, and
especially at high frequency @) of the complex argument of the exponential under the inte-
gral. We recognize in (46) the problem addressed in Chapter 1 in our study of the saddle-
point approximation in the context of phase-stationary asymptotics.

We recall that we are dealing here with a high-frequency approximation (@ — oo), so that we can
replace the Hankel function by its asymptotic expansion [Abramowitz and Stegun (9.2) p.364]:

[2 .
H((}l) (x) = el er(.r—m’4) . |:1 _
TX
Pl = /2“’  omitr=ald) J‘*“"’ PP
Tr —00

This is exactly what we have described in Chapter 1, with

which leads to

()

Z substituted with

t substituted with

substituted with

sz vofk)

Q Lelelpr=&iz—&in) dp

1

w

P

i(pr—£& z-¢& 2)

(47)

(48)

(49)
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In the high-frequency limit @ — oo,

WE ARE GOING TO REPLACE THE INTEGRAL J dp WITH A SUM OF CONTRIBUTIONS
AT THE SADDLE POINTS OF THE FUNCTION f(1).

EACH SADDLE POINT WILL CORRESPOND TO A SEISMIC "PHASE".

In the present case, there will be only one saddle point.

We note that the function f has the dimensions of a time, and, noting further that z <0; zo <0;
&, = cos i/ @ ,we can verify on Figure B that

pr— 4:1 i~ §] 20 = Trmwel. (50)

the travel time along the reflected ray.

THE DISCRETIZATION OF THE INTEGRAL IS JUST A MATHEMATICAL EXPRESSION
OF FERMAT’s PRINCIPLE

"ENERGY IS CARRIED ONLY ALONG THOSE RAYS WHICH
EXTREMIZE THE TRAVEL TIME".

Im ‘"JL
|
|
\
[ S Valey |
A ’\A__%‘ ‘r \
/ of B
jc
| |
i 1
¢ b ¢ e
|
FIGURE 6.6 i

The steepest-descents path I in the complex ray-parameler plane for obtaining P™" (see
(6.17)), when ¢y > o,. We have indicated the exact path for its whole length, using the
rule that wf(p) — @f(p,) is negative real, so that exp[w/f(p)] decays exponentially away
from the saddle point. Near the saddle point itself, ridges and valleys are as shown in
Box 6.3, with y = —mn/4. The dotted path is on a lower Riemann sheet, for which Tm &,
and Im ¢, are negative.
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In the case of the reflected P wave, we have
flp) = i(pr—&1z—§120); & = —5 = p 3

Hence

fip)=i l:"+(Z+ZO) £}
&

Any saddle points will satisfy

Ps = — 2+ 20 ¢
or
2
i [(z+20) +12] = ;—12; ps>0 (Re(£)20)
and finally
1 r
PR

(5D

(52)

(52)

(53)

(54)

where Ry = \r? + (z+2z)? is the distance of the point (r, z) where the wave is computed to the

"image" of the source, symmetric of it with respect to the discontinuity.

So, pg is just the ray parameter of the reflected ray in classical optics.

(The — sign in (52) comes from the condition pg>0 (remember z, z; <0) since Re (&) has to be

positive (or null).

THEN,

. | z+z P’ 7+2z

which for the value saddle p = py takes the form:

3 3
, .2+ 2 = I , r
[7(ps) = i — { }=—f

3 3
af | p3(z+2z0) a? (z+7z0)* py

Substituting now into (56) of Chapter 1, we obtain

- 172 . puz ' 271']73
¢P,,-g_ﬂ, = [= ef.l(ﬂ)fflrf‘l) PP (p.'i') rs efw[bj‘.l'féls(f.‘*‘zﬂ)], - ?_’g al2 (Z"'Z())E
27y $is ior
2 .
as r'w(—t+pxr+p,‘,-ﬂ] g 2w w e} (z+20)? ph
= PP(pS).e ¥ e —— 3 =
Vi s 2r w1

. N2+ (2 +29)0° ]
2 io| -t + ————— aZ (Z+Z )2
= PP (ps) - e [ 2 .»\/A.pa

S
ré &

(55)

(56)

(57)
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Remembering
Ps Iy
— = - >0 XX
is z+ 29 )
and Ry = \r2 + (z+20)?,
1 _eips _ o (2tz) psr (58)
Ry r (z+2z9) 12
we finally obtain
RII’ =
oPr = L Bp ) e [71 ) (59)
Ry
NOTE
. R, is the distance to the image of the source in medium 2;
. Py is the horizontal slowness of the reflected wave
1 r
Ps = — T/7—— (60)
@1 A (z+70)% + 12
. (pr—£&z— &1 20) = Ry’ is the travel time of the reflected wave.

ALLINALL, THIS IS A SPECTACULAR RESULT:

The potential of the reflected phase is (LOCALLY !!!) that of a spherical wave coming from the
symmetric of the source, and weighted by the planar reflection coefficient for the particular slow-
ness pg at the saddle, i.c., of the reflected wave.

BUT, that does not constitute a spherical wave, because that reflection coefficient depends on pg,
and hence on the particular point where the potential is computed.

o ps has to be smaller than 1/, but 1/ a; is not involved... pg could be larger than 1/ e, if
xy > .
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—  The case of post-critical reflection: pg>1/a,

This very important case describes the so-called Head Wave used in seismic refraction experi-
ments, and provides a full quantification of its amplitude.

] = Im{, > 0. ImE >0
’ ;J
| ; b meemme e MG > 0.Im g, <0
’ i
f J‘..’-7
g e 2 e @ e [M G < 0,IME, >0
™ A
7 ~ oy 1
I -
f I
A -
FIGURE 6.9

The integration path I in the complex ray-parameter plane for obtaining P™! (see (6.17))
when ¢; < «, but p; > 1/2,. Note that three Riemann sheets are needed as shown at the
upper right. Starting at point A, there is no contribution from arc AB. For BC, C to

1/25, and around the cut Im &, = 0, the path stays on the top sheet to D, which is some
point sufficiently far up to give a negligible integrand. Crossing the cut at D, the path
must descend to Im ¢&; > 0,Im &, < 0in order to keep the integrand analytic. From E
to the saddle point and on to G is exactly the path of steepest descents; at F, the path
crosses to Im &, < 0,Im &, > 0, and crosses back to the top sheet at the saddle. A large
arc GH contributes nothing,

As shown on the Figure [Aki & Richards’ (6.9)], in this case the situation is made much more
complex by the fact that the path from the saddle dives under the wrong Riemann sheet, which
cannot be connected simply to the upper left quadrant of the complex p plane.

Accordingly, the following changes will take place

° The coefficient PP in (59) will become complex, which will result in a Phase Shift of the
reflected wave;

. The path of integration I" has to be deformed around the branch cuts, and there will now be
additional contributions to the integral (46) in the form

Joi B L I 2

In the interval {0, 1/ a5}, we can define the real refraction angle i, = sin™' par,, and &, will take
the value cos i, / @ below the branch cut, and — cos i,/ e, above it. For large enough w, the con-
tributions of the integrals along the imaginary axis in (62) are negligible, and the two remaining

integrals will be
e, 0
[+, = (63)
0 /ey
®

—i(or+Z e P . o )
= Nagr ° (H“)'_[O : [ PP (cosiy>0)— PP(COSI2<0)]-g-exp[mf(p)].dp
1
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In (63), the function f is given by

F(p) = i(pr—2_Giz—2&120) (51)
and the brackets take a form derived from Equation (41R) of Chapter 3:
R = P2 Gy COSEy — p| &) COSiy (41R)

Po Oy COSil + proa COSiz

NOTE that it is legitimate to use (41R) which was a displacement coefficient, even though we
need one for potentials here, because we reflect in the same medium and without conversion, so
the two ratios of displacements to potentials (which are the full wavenumbers k = @/ ) are the
same,

[ PP(cosiy>0)— PP(cosi<0)] = (64)
Pa 0 COSEy — POy COSIap P2 &, COSEp + pp @) COSiy —4 py ps 0 @y COSIq COSiy
P20 COSiy + Py @) €OSiy Py Cly COSEp — Py &y COSiy piaj cos?ip — plad costiy

where [cos iy = 0].

We then elect to expand f(p) in the vicinity of 1/ a;:

| | 1
f(p)=f(—)+(p——)-f’(—) (65)
(24 (04} Xy

since the exponential will oscillate rapidly away from that value. In that vicinity,

| 1 1 N1/ ay —
cos’iy = l—sin®i, = — —p* = [—— ) — | cosiy = ~—2_F (66)
a5 Oy 2(12 '\||2(X2

In the integral (63), and in the vicinity of p = 1/ a,, the term +[ p/ &, becomes [ /(cos iy ] ;)]

Defining the critical angle i through

. . 1 @) . a
ic = sin Jeal Cosic = - —; 67)

we transform (63) into (68)

[ depmencoshy NUGZP, G posis) . expla(p-lay) (Ve -dp  (68)
0 P03 cos?ic N2 oy cosiy o

1
-2V2 pyof 1 = f 1 1
= z—pl:f'-exp[mf(—)}j% ——p-exp|;ia)L(p——)}dp
P2 &5 COs” I Oy 0 (24} (2%}

where we have further defined

1
Lo L lztal (69)
@, &
We now change variables (the end justifies the means...) to
1
LI dp = Biydy (70)

2%]

The integral in (69) becomes
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(71)

As @ — oo, the upper bound of the integral in (71) can be moved to v i o0, and then the integral
can be moved onto the real axis, where it becomes

[7 v expoLy - dy (72)
Note that
[elo] oo oo oo T
j e clyzﬂ = I:ycfyz] + J oy e dy ; hence j y? e dy = £
0 2 0 0 0
|7 excoLy-dy = wry 2 IE (735)
Finally, the full integral substituting for (56) will have the form
g [ R et oL She)
PRl L s = . e
4 2rxr (w L)32 Py 03 cos?ic
2
PRefr. _ b w0 I prar 74b
¢ w ¢ Vr L3 py ai cos?ic (740)
[Aki and Richards, (6.25), p. 212)]
where we have introduced the final notation:
. ‘ / +
b T cosic |z+z] 7%)

ay @)

Note the interpretations of L and ¢, in the context of the HEAD (Refracted) WAVE depicted on

the figure:

(<)

ZV>o

(73a)
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}_ | z2+2z0]

*a 1o,
below the discontinuity;

. L=pr- is the length of path in medium 2, crawling at grazing incidence

° t;,» which can re-written as
L lz+zo] . cosic|z+2z] L | z+20] ; ai
B s + = — + ——|cosic+—5——— | (76)
(245} é] (04) (e 4] (24 24} ay COSlic

L 1 +
L4 etz

2 o CoSic

is the travel time of the head wave: a segment L at velocity e, plus the two segments
| z+29| / cosic at velocity a;.

Finally, note that

. THERE ARE MANY, MANY APPROXIMATIONS !

. the dependence on r (or L) is in 1/NrL? = 1/ %, which is significantly faster than
expected from an intuitively cylindrical wave. However, this is not surprising, since at each
point while it is propagating in Medium 2, the head wave leaks back energy into Medium 1.

. The 1/ frequency dependence. This means an integration of the source time function.
Everything else being equal, the head wave will be less high-frequency than the source.

—  The high-frequency assumption (@ — oo) widely used in this derivation becomes somewhat

shaky....



