E.A. OKAL Geological Sciences 462

13 April 2016

Chapter 3

Seismic Plane Waves
(Mostly Reflection and Transmission)

Aki and Richards [1980]; Chapter 5.

1.  Recalling a few results from Chapter 2, and Introducing slightly different nota-
tions

° Slowness vector

We consider here the case of plane waves, and introduce a vector slowness s such that
u=u(r—s-x) (1)
which satisfies
s =—-1 (2)
C

where [ is the only direction in space along which derivatives are not identicially zero, and
¢ the velocity of propagation of the wave (& or ). It follows from the fundamental equa-
tion of dynamics that

A+2
(p_%)iij:(); (p_ Zu)ﬁ.s:o (3_A&R 5.3)
C C

Therefore, either (¢? = w/p)andu-s=0 (S wave) or (2 =(A+2w)/ p) anduxs=0 (P
wave).
For, if ¢ had neither of these two values, then u should be both perpendicular and parallel

to s, and hence 0.

. Potentials
We recall that the displacement u is written as its Helmholtz decomposition;

u=u"+u’=gradgy + curl ¥ with div¥ =0 4)
Letting
W= u(r-s-x)-1 (5)
it is easily verified that
6 =—-ul(t—s-x) (6)

where the notation f T denotes the (~1)th derivative of the function f, namely its primitive
or first integral.
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Similarly, letting
= u(r-s-x)- & &.s=0 (7
we obtain

V=28 ul(t-sx) (Ix&) (8)

Note (i) that the vector potential ¥ is perpendicular to both the S displacement and the
slowness vector; and (ii) that the ratio of a potential to its displacement involves not only
integration, but also the velocities & or f.

o Energy density

The energy density, per unit volume, is composed of kinetic and potential (elastic) energy.
The kinetic energy density is in all cases

1
ex = EP(L?)2 )

while the density of elastic energy can be written as
1

2
where g; and o; are the local strain and stress tensor, respectively. In particular
1. .
g = 5(11,-,_,,-+L£J-‘,-):—§(u,-sj + ujs;) (11)

(NOTE ERROR (Derivative dots Missing) in Aki and Richards [1980; last line of Page 126])

In particular,

Eyp = —u-s (12)
Invoking Hooke’s law
o; = Aeydy + 2peg; (2_6)
we find
1 A
ep = 2 Oyl = 5 ey g + W E;E (13)
According to (11),
gg = —u-s; ene; = (-s) (14)
and
[ .
gjey = 7 L(-8) + (W)°(s)’] (15)
Hence

1
¢e = 3 % & = 5[(“”)(&.5)2 # u(ﬁ)z(s)z] aq
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(NOTE ERROR (w should replace 1) in Aki and Richards [1980; Last Term of (5.4)])

—  For a P wave, for which u//s, the terms in (16) add up to
I A4+2p
2 a?

1 |
er = 5 (42 (WP (8)? = (uf = gp(a) =ex A7

—  For an S wave for which u - s = 0, the only remaining is the last one, leading to

| 1
ep = 5 w(WP(Y = 5 +

|
5 2ﬁ~mﬁ=5pwf=ex (18)

so that in both cases, we verify the identity of the kinetic and potential energy densities.
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2. Plane Waves at Surfaces of Discontinuity

. Boundary conditions

We consider here a surface T separating two media indexed 1 and 2, featuring different
physical properties (p, A, ). During the passage of a seismic disturbance characterized by
fields u' and u? (and hence by stress fields o' and ¢?), a number of physical conditions
must be satisfied.

—  Conditions on the displacement fields u

If the two media are solid, the interface must remain welded, i.e., the two displacement
fields of media 1 and 2 must be the same on both sides of the interface:

u = u? (19)

If at least one medium is fluid, it is acceptable to have a discontinuity of displacement in a
direction parallel to the surface X; in other words, the condition (19) must be satisfied only
along the local normal to X ("the vertical"), so as to have neither penetration of one medium
by the other, nor creation of a vacuum'. Let this direction be, locally, €, ; then (19) reduces

to
ul = 2 | (20)

—  Conditions on the stress fields o

In order to obtain this second set of boundary conditions, we consider a small element of
material straddling the discontinuity as shown on Figure 1:

t While the former condition is always upheld, the seond one (no creation of vacuum) may be violated when materials
are poorly welded to each other (e.g., sedimentary structures or precarious rock formations). When attacked with
vertical accelerations greater than g, layered structures can be decomposed (as was the case during the 2011
Christchurch earthquake), and precarious structures flung up.

This chapter will consider seismic displacements of small enough amplitude that such situations are ruled out, and
hence that the vertical continuity of displacements is always met. e
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For this purpose, we consider the surface 65 as small, but fixed, and the thickness dz of the
element as small and eventually going to zero in the mathematical sense of a limit.

If the surface can be regarded as planar (i.e., its radius of curvature is much larger than all
the wavelengths involved in the problem), then our element can be thought of as a coin
("penny") of which one half is located in each medium.

We now write the balance of forces applied to the penny. The force applied to the top face
(red on Figure 1) is
T, = o' /i &S (216
and that applied to the bottom face (blue on Figure 1)
T, = —-c>i-8S (21b)
The minus sign comes from the fact that, on the bottom face, the outgoing normal is —1.
The sum of those contributions is
T, +T, = (61—0y) A+ 65 (22)
which is of order ¢5.

The contributions from the sides of the penny (schematized in green on Figure 1), will be
on the order of the stresses o times the lateral surface of the edge of the penny, i.e.,

dz - V6S. When &S is kept a constant, and dz — 0, these lateral contributions go to zero;
hence they can be neglected with respect to (22).

Thus, the resultant of forces acting on the penny is simply (22). According to Newton’s
law ("f = ma"), it will convey an acceleration y to the penny of mass dm = §S dz :

1 1
y = —(0o1—0y) i8S = —— (01— ) i (23)
dm pdz

(where 7 is the average density of the coin), which will become infinite, and hence non-
physical as dz — 0, except if

(oy—0) A =0 (24)

which constitutes the second boundary condition, complementing (19). If 7 is in the z
direction (7 = &,), (24) can be rewritten

1 _ 2 . 1 _ 2 ., 1 _ 2
Oy = Oy s O, = 0y, O, = O - (25)

Note that when one medium, say 2, is fluid, the shear stresses a_fz and crf,{._ are identically
zero. In practical terms, the boundary conditions can thus be summarized as:

SOLID - SOLID

1 _ 2. I _ 2 1 o 2
u, = Uy ; U, = uy; u, = Uy ; (26ss)
s 1o 2. I _ 9
O = O § o O, = O
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SOLID (1) — FLUID (2)

u; = u?; (26sf)

W= (26ff)
1 _ 2
O-zz = Jzz

Snell’s Law

The derivation of Snell’s law is made relatively complex in the case of solids because of the
existence of both P and S waves, and of the presence of six boundary conditions. This is
why we will first derive its concepts in the simpler case of two liquids.

The Liquid-Liquid Case: Full Derivation

We define the surface as the plane z = 0, with negative z in Medium 1, and positive z in
Medium 2. We consider the case of a plane wave (hence there exist some vector s) incident
in Medium 1. By consider it "incident", we tacitly imply that its source is towards the neg-
ative z, and because of causality arguments, it must have a positive si.. By the same causal-
ity argument, we can exclude any negative sg, because in Medium 2, we are allowed infinite
positive values of z, and such a propagation would be non causal.

In both media, we can conduct an a priori 4-th order Fourier decomposition in frequency
(integrating over time ¢) and the three components of wave vector (or slowness), integrating
over the components of space (x, y, z), and write u as

+oo0 +co , +oo : z
u = j e'“”dmj e""‘-r*'dk_,.j e, _[ it U, ke kyk;)  (28)

In Medium 2, the wave equation and the condition of causality will require that

2 T w? 242 22
B =i = A5 -022-) (29)
2

This will represent a transmitted wave (Hence the superscript T).

In medium 1, for any given k, and ky, we can have two choices of k;, because we are
bounded by z <0, and so the causality problem does not arise. The positive value of £, will
be represented by the incident wave, but they can exist a negative solution, which will
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represent a reflected wave:

R w?
ky =~ 5 — (kL B~ (B} P (30)
&

We now assume that the incident wave is harmonic, i.e., it has only one frequency w'. We
apply (28) to the vector u? —u' in (2611), which must apply for all times ; u® is made only
of u”; u! is a combination of u' and u®. Because of the linearity of the Fourier transform,
we find that the reflected and transmitted waves can have only the Fourier component @’ .
Similarly, because (2611) must hold for all x and all y at the surface z = 0, the reflected and
transmitted waves can only have the same k, and k, as the incident wave. This is caqlled

Snell’s Law.
A physical expression of Snell’s law is then:
of = 0" = w, (31t)
B =kl =k (31x)
R _ 1T _ gl
KR = kT = k! @31y)

Accordingly, we drop all superscripts on those variables. We can also orient y so that

£y I = é, - &,=0. We are then left with the two equations

kR = — k] (32R)
)
kT = A[—= - (k)? (32T)
o
2
KR = A S5 - (k) (32R)
aq
or, introducing the incidence angles i', i® and i, such that
@
ko= 2 cosit ; k, = — sini! (341)
’ [24] o
@
k! = -2 cosi®; k, = = sini® (34R)
’ o [24]
& = 2 cosiT ; k, = — sini’ (34T)
' [£5) %)
we obtain the classical relations:
L] R Y i
sini _ st _ Sl i (35)
149 o oy

WITH THIS RESULT OBTAINED

We can now proceed to try to solve for the amplitudes of the reflected and transmitted
waves: Changing notations slightly, we consider an incident wave derived from the poten-
tial
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I . B . . Cos i
¢ = goexpiw(t —s,x) exp| —iw - z
I

and similarly

B 5 . e . Cosi;
¢" = R ggexpia(t — 5,X) - exp| i@ —
1

T oo .y e . COSiy
¢ =T - ¢gexpio(t —s,x) exp| —iw  F
2

from which we derive (for z = 0) the displacements

ul = —iws, gy expia(t — s,x)
cosi
I 1 : "
U, = — i@ o P expia(t — s,x)
ul = —iws, R gy expio(t — s.x)
cosi
R ; 1 .
u, = iw > R ¢p expio(t — s,.x)
1
ul = —iws, T ¢y expio(t — s,x)
. COSi .
uf = —iw 2T do expio(f — §,x)
the strains
2
@
I : ;
gy = — —5 P expia(f — 5,X)
o
2
@ ;
B = ) R ¢p expio(t — s,.x)
1
2
)]
T ; 2
Ey = — ? T do CXPICU(f — éxl)
2
and the stresses
A
1 T _ 2 . :
On = A&y =~ @ —7 o CXPIR( — 83 X)

1

A
- w? a—é R ¢g expio(t —5.x)

1

R _ R
Cp = /11 &y

. i _
of = Ayeh = —a? a—i T ¢g expio(t — s,x)
2

Equations (26ff) lead to:

(1-R) cos iy _ Tcosi2

24 (25)
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(361)

(36R)

(367T)

(371x)

(371z)

(37Rx)

(37Rz)

(37Tx)

(37Tz)

(381)

(38R)

(38T)

(391)

(39R)

(397)

(40d)
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T ps (40s)

(L+R) p

whose solution is

Qn COSE| — &) COSi
R = P2 @y ‘1 P11 ‘2 (41R)
Pa 0y COS L + P& COS1i9y

2 p; @ cOSI
T = P.l 2 I : (417)
P2 Gy COS L + P11 COSliy

NOTE THAT THESE COEFFICIENTS RELATE TO THE POTENTIALS ¢® and ¢

If we had looked for coefficients expressed as a function of displacements, they would be
scaled by 1/a: In this context, R would be unchanged, but T would be multiplied by o,  a;.

When using published formule for reflection/transmission coefficients, it is crucial to
always check whether they relate to potentials or displacements.

THE ROAD TO P-SV COUPLING

—  We will now consider expanding these results to the more general case of a solid-solid
interface. It is known traditionally that this must involve P — S (or S — P) conversions
(except in special cases such as vertical incidence). This may become paradoxical, and so
we will provide a justification by examining the horizontal displacements at the boundary
of two liquids, as solved above.

Once the coefficients R and T have been obtained, it is possible to go back to Equations
(37*x), and to show that the combined horizontal displacement u, in Medium 1 is distinct
from that of the transmitted wave in Medium 2. This is made possible because the media
are fluid, and thus can slide on top of each other. But, had they been solid, the welded
boundary condition (26ss) could not have been met (not to say anything of the condition on
the shear stresses o,,). Hence the necessity to bring in two additional degrees of freedom
by involving converted S waves in Media 1 and 2.

A more mathematical argument would be that, once a proper y direction has been selected,
(26ss) requires solving four equations, and thus four unknowns (the amplitudes of the
reflected P and S waves, and of the transmitted P and S) are necessary.

HOMEWORK 4

. Compute this effect fully. Show that there is no horizontal slushing of the media on top of
each other at vertical incidence. Any simple explanation?
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THE MOST GENERAL CASE: SOLID-SOLID

We follow here the derivation of Aki & Richards [1980; pp. 144—151].

. Medium 1 is taken as "on top" of Medium 2
. The orientation conventions are those of Figure 5.8 (reproduced on Page 11)
o The notation is to use use an acute accent ( ~ ) for waves propagating upwards and a grave

accent () for waves propagating downwards. Thus a term like PP will mean the reflection
coefficient of a P wave incident in Medium 2 (lower half-space) and PS would be the trans-
mission coefficient of a P wave incident in Medium | and converted to an S wave in

Medium 2.
. These coefficients are displacement coefficients
. Strategy to compute the coefficients.

Consider, for example, a P wave incident in medium 1. It is going down, so we can write
its amplitude as P, . It creates displacements and stresses at the boundary which are linear
in its amplitude P . Similarly, the other 7 possible waves (incident or emerging P or S in
each of the two media) create similar terms, and the boundary conditions can be written as
A&R’s (5.33) p. 145;

sin i) (P, + P;) + cosj (S, + ;) = sin i,(P, + P,) + cos j,(S5 + S,),

cos iy(Py, — P,) — sinj,(§, — §,) = cos iy(P; — P,) — sinj,(S, — §,),
20,183 cos iy(Py — Py) + pifull — 283093, — )
= 2p,B3p cos ir(P, — Pz) + paBa(l = 2B3p7)(S2 — S,),
prog (1 — 25%192)(151 + Prl) - 2P1f)7?17 CUSj;(Sl 4 51)
= pyoy(l — zﬁ%PZ)(Pz + P,) — 2p,f3p cos jo(S, + S5),

(5.33)
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PS

Incident P

@

(a)
PS
PP
/ ;
Incident P
PS
FIGURE 5.8
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ss
Incident SV
SP
w '
$S

(b)

s

$

s$

sp

Incident SV

(@)

Notation for the sixteen possible reflection/transmission coefficients arising for problems
of P-SV waves at the welded interface between two different solid hall-spaces.

8

/ P2 %2 B2
P

FIGURE 5.9

S
P, / .
w 0 //
i\ s,
5

The complete system of incident and scattered plane P-SV waves, in
terms of which the scattering matrix can quickly be found. Short
arrows show the direction of particle motion; long arrows show the

direction of propagation.

148
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This equation (A&R 5.33) can be rewritten by regrouping incident waves on the right and

emerging ones on the left. Because of the linearity of the whole problem, there exist two
4 % 4 matrices, M and N such that:

Pl Pl

lS:1 Sl

L = = 5.34
M| | = N5 | (5.34)

S -

The reflection and transmission coefficients correspond to the amplitudes of the emerging

waves when the incident wave is one of the unit vectors. Therefore, they are just the indi-
vidual elements of the matrix

M™-N (42)

In short (sic!), the 16 possible coefficients are given in A&R (5.39, pp. 150-151) which is
reproduced on Page 13, using the following notation:

_sindp sinip  sinj;  sinjp @3)
o o B B>

@ = py(1 — 283p%) — pu(l — 2B3P%), b= p,(1 — 2p3p%) + 2p1 P07

¢ = py(1 — 2837 + 2p:55p% d = 2(p,B5 — 1P,
: i i COsz
€OS 1y cos iy F= bCOSJx + e ]

E = b OCL + c 0:2 3 ﬁi ﬁZ
_ _dcosil cosjz, H:a_dcosiz'cogha

G = 0.’.1 Bz C‘{'2 1

_ EF + GHp* = (det M)/(¢t19212) (5.38)
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pp - (o iy C0si) (a 4 g Sos i COSJz)sz]/D,
0oy 0y 0y B2

. i i S i, COS
p3=._z“““(m;+ dci‘z ﬁh)plﬂmp)

0y 2
PP = 2p, U py f(0,D),
am CcoS I
PS = 2p, ! HP“l/(BzD)

g i CcOS COS
SP = —2502(615 + cd S8R JZ) B, /(D)

B, O B,
_— cOS Jy COS j, COS 1, COS Jy 5
S§=—||b —ec——=|E — (+d )Gp]/D,
|:( B1 B2 ) 25} By
£ cos
P = —2p, 0t Gpp,/(a;D),
B
- cos
$ = 20, %L £, /(8,D)
By
. cos i
PP =2p, 2 Foty/(e,D),
s cos i
PS = —2p, ? Gpa,/(B1D),

2

p— | (pes iy ECIATIN (a L g8 COSJI)GpZ}/D,
oy L5 ay Py

o ] 08 I; COS j
75— gt (ac 4 pa 22N J) 0,/(B,D),
oy 0y By
5o cos j
P = 2p, 12 Hpp,/(e;D),
2
7 cos j
SS = 2p, “ T2 Ep,/(B.D),

B2

B — 200312( + pad % iy cosh)Pﬂz/(ﬂtzD)
ﬂz 1 ﬂ

£ cos j; COS j, cos iy COS j,
SS=1|[b —c E+(a+d —ﬁ—)H ZJ/D.
l:( B B2 ) 0y B d

- Page 13 -
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In addition to these formaula, one must consider the case of SH waves, Le., S waves polar-
ized perpendicular to the plane of incidence. In this particular case, the problem is entirely
decoupled, i.e., only SH waves are transmitted or reflected and the boundary conditions
reduce to continuity of u, and o, . As given by Aki & Richards [1980, (5.32) p. 144], the
corresponding displacement coefficients are:

&6 = p1 B1cos ji — pa By cos jp - _ %

p1 By cosji + pafycos j;

555 2 cos
$§ Pgﬁz J2 . 44
pi Bicosji + pafycos

2 py By cos J

S = . .
p1 Bycos ji + pyfBacos

There are also special formule applicable to the case of a solid-liquid interface (e.g., the
core-mantle boundary), and reflection at a free surface. They can be found in a variety of
textbooks [Aki and Richards, 1980; Ben-Menahem and Singh, 1981; Lay and Wallace,
1995].

Such formule are known as Zéppritz' coefficients. Unfortunately, they are plagued by
many misprints in many texts. It appears that those listed in Aki and Richards are free of
errors, but this is not guaranteed...

In addition to the warning about potential as opposed to displacement coefficients, note that
the orientation conventions shown on Page 11 are not always followed by other authors,
especially regarding the orientation of SV.

Finally, some authors have pushed their desire for ambiguity as far as using grazing angles

e, = — — I instead of incidence angles i - - -

HOMEWORK 5

(1)

(ii)

(iif)

(iv)

Program the underside reflection coefficient PP for the 660—km discontinuity. Use a jump
of 4.07 to 4.36 g/lem? for p, 10.25 to 10.64 km/s for @, and 5.61 to 5.90 km/s for S.

Use Formule (A&R5.38; Page 13), and find the maximum of PP as a function of i (or
slowness p).

Comment with respect to efforts towards finding precusrsors to phases such as PKPPKP.
Compare your results to those obtained by using Formule A&R (5.44) p. 153. Discuss.

Easier! Use (44) for a similar study of underside reflection of SH waves. Conclusion.
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—  Another important special case: Reflection at a free surface

At a free surface (e.g., the Earth’s surface), one of the media is a vacuum, which can be
arbitrarily displaced without producing any stresses or restoring forces (both its elastic con-
stants are zero). Thus, there remain only two boundary conditions for the problem of an
incident P or SV wave

oy =0 and R (45)

and just one for an incident SH wave
oy = 0. (46)

Because (45) involves two boundary conditions, it cannot be satisfied by a single reflected
wave and so, an incident P (resp. SV) wave will give rise to a standard reflected P (resp.
SV) wave, but also to a converted refelected SV (resp. P) wave. The relevant coeffcients are
given by Aki & Richards [1980, (5.26), (5.27), (5.30), (5.31), p. 140], which are copied

below:
(47)
ﬁ(l_ 22 2+4 2 COS [ COS j
pp = L "
1 2 . i) (526
+(—2 _— zpz) + 4P2 Cos 1 cos j ) ‘
o f I
\
a cosifl |
* i(ﬁ = 2p* |
Bi—p B & 527
1 2 ; . 27
*ﬁ2p2) 4 4,2 COS i COS j
( 2 P
i1
gl 25 (_2 _ 2p2)
SP = 5 (5.30)
S o2 Jr42cos:cosj ’
(ﬁz p) # o B }
1 2 . ; |
(_2 _ 2p2) _ 4 COS i COs j
STt (5:31)
(_2 _ 2p2) + 4p2 COS 1 COS )
o« p
where p is the common ray parameter or horizontal slowness of all the waves:
- - k
p=—r=l= “8)
o B @

In addition, for an SH incident wave, the reflection coefficient is identically 1:

§8. = 1 (49)
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There are several important consequences to the system of Equations (47) (and 49).

o First, when a teleseismic P wave reaches a distant station, a fortiori located on the surface
of the Earth, it gives rise to a vertical displacement which is not just its own, but the combi-
nation of the displacements induced by the incident, reflected P and converted SV waves.
Let us assume we operate a vertical seismometer and the P wave is incident with amplitude
A at an incidence angle i. If we use the orientation conventions of Aki & Richards [1980]
(reproduced on Page 11), this combined vertical displacement will be

A - [cosi — PP cosi + PS sinj] (50)

rather than the intuitive value A - cosi. This corresponds to a "response coefficient”

51D
2 1 :
P E (B—z- - 2p?) cosiy
C z - _ s~ A . H =T . . s =
(ig) = [ 1 = PP(iy) ] cosig + PS(iy) sinj, (A a2y 4 p? cosi cosjg

p? L2

Similar expressions can be obtained for the radial (horizontal away from the source) ampli-
tude resulting from the incidence of an SV wave, and for the cross terms (e.g., the horizon-
tal motion resulting from an incident P wave). They can be found in Okal [1992, Seismol.
Res. Letts., 63, 169—180, 1992] from which "Figure 4" (Page 17) is taken. The case of an
incident SH is very simple: C°¥ = 2 regardless of incidence.

. NOTE FINALLY that the common denominator of the four coefficients in (47),

2
1 cosi cos j
A=|—-2p*| +4p* — 52
L’,z p} P s (52)

has the good fortune of being strictly positive, (as long of course as the angles i and j are
real), since in the geometry involved i and j cannot be greater than #/2 and the second term

cannot be negative, while the first is also positive; this means that the coefficients (51) can-
not blow up (become infinite); big sigh of relief...

Actually, there could be the possibility of an S incidence at exactly #/4, and a P graz-
ing incidence (i = #/2), but in this case all terms in both numerators and denominators
of (51) vanish. A careful Taylor expansion of these coefficients show than the con-
verted ones (P3 and PS) go to zero, while PP — 1 and $S — — 1 which saves the day:
the coefficients do not blow up.

Incidentally, this situation would require a medium with e/ ff = \2, or A =0. This is,
to my knowledge, the only physical result directly involving the Ist Lamé coefficient

A.

BUT, IF WE WERE TO ALLOW COMPLEX VALUES OF THE ANGLES i AND J,
IT MAY BE A DIFFERENT STORY.... STAY TUNED !
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Okal
INCIDENT P
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=
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-
Q
= 5
o
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3.5 = -
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n

N
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1
0.5
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—-0.5
o 5
& af .
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v ~1F .
< - -
M = 1 ! 1 ] I 1 ] 1
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INCIDENCE ANGLE

Fig. 4. Surface response coefficients CP(iy) and C5(j,) as a function of
the incidence angle and in the case of a Poisson solid, as
described by Equations (18) and (19). Top: Response of a vertical
seismometer to an incident P wave of unit amplitude. The solid
line represents CP, the dashed one (cosiy) the contribution of the
incident P alune. Bottom: Response of a horizontal seismometer
polarized away from the source, to an incident SV wave of unit
amplitude. The solid curves show the amplitude (top frame) and
phase (bottom frame) of CSY. Note fhat due to critical § ~ P
reflection, this coefficient becomes complex around j, = 35°. G
is also compared to the surface response for SH waves
(identically equal to 2), and to the contribution of the incident
wave alone (cosjy; dashed line). This figure shows that the
apparent SH/SV ratio is strongly distorted beyond 30° of
incidence.
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THE ROAD TO RAYLEIGH WAVES

The so-called inhomogeneous waves

When performing the Fourier transforms (28) in a medium extending infinitely in the x and y
directions, the corresponding wavevector components k, and k, must remain real, so that the rel-
evant exponentials do not blow up. Assuming a choice of k, and k,, k, is then determined from
the wave equation

e
(e or B?)

the choice of velocity (« or #) depending on the nature of the wave (P or §).

K2 - K (53)

A problem develops when k, and k are too large, and the solution to (53) would be imaginary.
This cannot be tolerated if the medium is unbounded and the coordinate z which multiplies —i k,
in the argument of the exponential is allowed to go to plus and minus infinity. BUT, if the
medium is bounded by a flat layer (say z > 0), then pure imaginary values of k, = —ix with
x>0 are allowed since the exponential exp(—ik,z) would then blow up only for z —>—oco
which is not allowed inside the half-space.

Such "inhomogeneous"” waves (so named because their amplitude of oscillation is not constant
in space...) are legitimate to consider as solutions of the wave equations in a half-space (or a
layer).

AND BECAUSE OF THE PROPERTIES OF COMPLEX NUMBERS, ALL THE PREVIOUS
ALGEBRA REMAINS CORRECT WITH INHOMOGENEOUS WAVES AND IN PARTICULAR
THE REFLECTION/TRANSMISSION/CONVERSION COEFFICIENTS WILL REMAIN
EXACT, AS LONG AS WE ALLOW FOR COMPLEX ANGLES OF INCIDENCE FOR WHICH

sini > 1; cosi pure imaginary (54)

We start with the simplest idea, which is to see if a single inhomogenous wave can exist by itself
in a half-space. Assume no dependence on y and the case of a P wave. While a wave such as

u=Apl-expli(wt—k,x) — xz] (55)
is legitimate as long as
2
k%—x2=%; x>0 (56)

the wave must still satisfy the two boundary conditions (45). The only solution is Ap = 0.

However, if we allow both P and S waves, we will have two degrees of freedom (their ampli-
tudes), and so we may be able to find a case where two boundary conditions can be satisfied with
a non-trivial solution (i.e., both amplitudes are non-zero). This will be the case if the system relat-
ing the boundary conditions to the amplitudes of the waves becomes degenerate, i.e., its
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determinant vanishes. In other words, these two legitimate P and S inhomogeneous waves would
just happen to combine to satisfy the two boundary conditions by themselves, without the need of
the "reflected" ones which would be illegitimate, since they would have negative x. That would
require a combination of amplitudes Ap and Ag such that

Ap BP + Ag SP = Ap BS + Ag SS =0 (57)

Since the terms PP... are the elements of the matrix M - N (42), this requires that the matrix be
singular, i.e., that its determinant vanish.

Another way of looking at the same problem is to consider that the legitimate waves (x >0) are
the reflected P and S waves of an incident P (or/and S), which would be illegitimate (x <0),
except if by a stroke of luck its amplitude is zero. This corresponds to the case when the reflec-
tion/conversion coefficients (51) will become infinite, i.e., when the denominator

2
1 si j
A = |i*“2172] b Al Cosi COS j (52)

a fp

vanishes.

—  Thus, we now attack the problem of trying to make the determinant (52) zero:

2
1 cosi cosj
— —2p*| +4p? — = 0 58
) BT -
. Recall that with 7 and j both real, hence with real values of the cosines, there is no hope.
. Remember that sini and sin j must remain real (albeit possibly greater than 1) so that

amplitudes do not blow up for x — +oo. Also, Snell’s law must be verified. Hence, the first
term in (58) is real positive. The only possibility is then to have both cos i and cos j imagi-
nary. This will be the case if both sini and sin j are greater than 1 (which requires only the

latter since a > f8):
sin i sin j 1
p=—=—>—=>
B

o B

Equation (58) can be rewritten as a function of p only:
cosi = i Vsin?i— 1; cosj = isin?j—1 (60)

(the signs of the roots are determined by the condition x >0), and then

(59)

K|~

2
| 4 p*
[F—2p2:| - a%x/(pzatl)(pﬂﬂz—n (61)

leading to

4
16 p*
{——21)"-] = az;; (P’ -1)(p* B> - 1) (62)
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and in turn to

1 1)2 p4 p6 & § pﬁ pﬁ p4'
E = Sﬁ + 245 — 32F + 16p° = ]6]) = 16E = ]6@ + 16 a2ﬁ2 (63a)
a?

5 5 g B 5 6 A _
1 — 88%p% + p*p*|24-16 = % l6—16a2 =0 (63b)

Setting (y = % p*) which must remain greater than 1 (59), and further considering only a
Poisson solid for which a*/ % = 3,

16 16
1 — 8y + }»2(24-?) - ):3(16—?) =0 (64a)
56 32
1—8y+Ty2—?y3=0 (64b)

which is the classical equation for the phase velocity of a Rayleigh wave at the boundary of
a Poisson half-space.

It has the "obvious" solution y = 1/4, which is not acceptable, since (59) y must be greater
than 1. Factoring (1 — 4 y) out of the LHS of (64b), one gets

8
(1_4),).(53,24”1):0 (65)
whose other solutions are given by
3+43
8y - 12y +3=0; WA —y (66)

of which only the top (+) sign is acceptable, since y must be greater then 1 (59). Finally

g e %ﬁ = 1.0877 (67)

which is often expressed as the ratio of the phase velocity C = 1/p of the wave to the
shear velocity

= s = 0.9194 (68)

C
B 3 4+43

A classical Rayleigh wave consists of the superposition of an inhomogenous P wave and an
inhomogeneous S wave, which have exactly the right combination of wave vectors to satisfy
both boundary conditions without the need of a wave propagating in the opposite z direc-
tion, which would be illegitimate as it would blow up at infinite positive values of z.

This solution can exist only for ONE value of the phase velocity C (68).
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NOTE that the results of this chapter require
. a flat boundary
. a plane wave

—  Unfortunately, neither of these assumptions works well in real life. The Earth is spherical
and point sources generate spherical waves...

The following chapters will try to address these problems.

HOMEWORK 6

One sentence answers for each question
. Can there be Rayleigh waves at the free surface of a liquid half-space? Why?

° Can there be interface [Rayleigh-type] waves at the flat boundary between two liquid half-
spaces? Why ?

. Can there be Love [i.e., SH-type Rayleigh] waves at the free surface of a solid half-space?
Why ?



