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Chapter 2

Vector-wave equations and Green-function

solutions for homogeneous media

Aki and Richards [1980]; Beginning of Chapter 4.
1. Vector wave Equation

We consider here a homogeneous, isotropic, linear elastic medium (HILE), extending to
infinity. and seek to express the fundamental equation of dynamics ("F = ma") for an element of
matter taken as a small cube (Figure 1), extending between coordinates x and x+dx, y and
y+dy, z and z+dz:

a8

¢

We first focus on the force applied on the left side of the cube. According to the definition of
stress, this force is

d’F:{;ﬂﬁ = —0p dS\ = — 0 dy dz (l)

The negative sign comes from the fact that the outgoing normal to the surface is directed towards
negative x. Note also that (1) actually represents three equations, one for each component i of the
force dF.

The force applied to the right side of the cube is, similarly,
AR = . (x+dx) - dy dz @
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With respect to (1), we have a positive sign, because this time the outgoing normal is in the direc-
tion of positive x, and we have to consider the value of the stress at the abscissa (x +dx) of the
right face of the cube.

The resultant of (1) and (2) is:

0 0y,
dr;, = [a,-_\.(x+dx) - cr,-_r(x):l ~dydz = % cdxdydz = oy - dxdydz 3)

If we then add the contributions of the four other faces, we obtain
dF; = [cr,o_,.,_\. * Ty F O‘,-z,z]- dxdydz = oy - dxdydz 4)
so that the volume density of force £ defined by dF = el . gy = ghtemal . gy dy dz, is

just given by:

fllnremm' = B8 or plternal . qiv o (5)

1

Note that in (5), the operator div is written in bold, since the divergence of a tensor is a vector.

For any given stress field o (x, y, z), (5) represents, at each point, the density of restoring forces,
seeking to bring the material back to its equilibrium state.

In a HILE medium, we apply Hooke’s law,
O = Agydy + 2 & (6)

(where A and p are the Lamé constants of the material), to express o as a function of the strains &,
and hence of the spatial derivatives of the displacement field u, and then apply Newton’s law to
obtain a partial differential equation ("wave equation") involving only u.

In addition, we reserve the possibility of a field of External density of forces (e.g., gravity),
fEJ‘ferrml .

piiy = oy + M = fy + Aoy + 2peEnn = fi + Aupy + M[Hi,kk +uk,fk] (N
(where we drop the superscript External)
.;.

We can rewrite (7) as :

pi; = fi + (A+20) uy 4 — M[Ui.kkHHk,ki] (8a)

piu =1 + (A+2n) graddiva — pcurlcurlu (8h)

T Why? .... The end justifies the means !
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HOMEWORK 1

° Prove (8b) from (8a).

Hint:

In tensor notation, the curl of a vector is given by
(C“er)f = E.'Uk uk’j (SC)

where the g;; make up the permutation tensor: & =0 if any two indices are

equal, +1 if ijk is a direct permutation (e.g., xyz), —1 if it is an indirect one (e.g.,

xzy). |

You may have to use to the identity
Eijke * Etmk = Sy ‘sjm = Oim 5;’1 (8d)

[ the 3-d permutation tensor £ is totally unrelated to the 2-d strain tensor & ]].
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We first consider the case f =0 (no external forces), and impose various symmelries to
identify the nature of seismic waves. This problem will illustrate how a HILE medium, initially
deformed, evolves in time and space as a consequence of this pertubation. Equation (8) becomes:

pi = (A+2p) graddive — pcurlcurlu 9

This equation (9) is not really as nice as we would hope, because the coefficients A + 2 and p
are not equal (can they be ?). For this reason, we use the following result:

Any vector field u can be decomposed as the sum of a gradient and a curl:

u = grad ¢ + curlA with divA =0 (10)

— This is known as Helmholtz’ decomposition [Aki and Richards, 1980, Box 4.2, p. 69]

We then split u accordingly:
u=v+w; v = grad ¢; w=ocurl A ; divA = 0 (11)

P (grad ¢ + curl A ) = (A+2p) graddivgrad ¢ + ucurlcurlcurl A (12a)

which we rewrite as (remember "H" in HILE):
grad[pgi)' — (A + 2w divgrad ¢] + curl [p[k + U curlcurlA] =X =0 (12b)

and we apply Box (10) to the null vector X, obtaining
po = A+2wdivgradg = (1+2p) Ag (13a)

pA = — ucurlcurl A (13b)
It is time to remember Equation (28) of Chapter 1 for any vector V
AV = graddivV — curlcurlV (1_28)
Because, in (10), we have imposed div A = 0, we see that (13b) can be written

pA = pAA (13¢)

The combination of (13a) and (13c) expresses that the field of displacement w can be written as
the superposition of a gradient v and a curl w whose potentials ¢ and A satisfy WAVE EQUA-
TIONS (P WAVES and S WAVES), with velocities o and 8 given by

4
K+-
A+2 w I
o L 3, Ap = — ¢ (14a)
p P o

D 1 .
- AA = —A 145
B «/p 7 (14b)
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2. Solutions to the Wave Equations

A. Plane waves

We call plane waves solutions to (14) whose spatial dependence is of the form # - x where ¥ is a
constant unit vector in space.

It is clear that solutions to (14a) are of the form

¢=¢|[r~p"‘)+¢z(r+ﬂ) (15)
[04 [0 4

where ¢, and ¢, are arbitrary functions. In principle, such arbitrary functions can always be
expanded onto their Fourier components, so it is interesting to consider the special cases when
@1 or2(7) = expiwr, leading to

p(x,1) = ¢ - expilot —k-x] (16)

where Kk is the wave vector:

k=%

14 (17

SHES

The upper sign represent a wave propagating in the direction ?, the lower one a wave propagating
in the opposite direction.

Note that the displacement u satisfies
u=gradg = —-igk (18)

leading to this important result

THE DISPLACEMENT IN A P WAVE IS PARALLEL TO THE PROPAGATION

For an § wave, (15), (16), (17), (18) are replaced with

7-x VX
A=A|lr—-—— |+ A —_ 19
1( 7 ) 2[’+ 7 ) (19)
A(x,t) = Ay -expilot—k -x] (20)

)

k=x—17¥ 21
k 7 P 2D
u=curlA = —i kxA (22)

so that now,

THE DISPLACEMENT IN A S WAVE IS PERPENDICULAR TO THE PROPAGATION

Finally, u being a gradient in a P wave and a curl in an § wave, the displacement of a P wave is
irrotational (curl-free), and that of an § wave divergence-free (i.e., there is no change in volume).
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B. SPHERICAL WAVES
The situation becomes a little more complex. We consider the case of the curl-free field of dis-
placements

u=v =gradg (23)
¢ must satisfy the wave equation (14a), which in spherical coordinates, takes the form
1 o (,0¢ 1 9 (. ¢ 1 9%y 1 9%¢
= — | — ——— —|sin@ — | + — = = = 24
Af r2 dr (’ or ) T Zsine a0 (Mn r2sinf 92 a? 912 24

(We have replaced the azimuthal coordinate ¢ (longitude) with ¢ to distinguish it from the poten-
tial ¢.)

A spherically symmetric wave is one with only r dependence, where all derivatives with respect
to @ and ¢ are zero. Then

1. Py 209
= 22 5
a? ’ l:arz ¥ r 8;'] (25)
Defining @ = r ¢, we obtain
b Jp ’o Iy 0¢
?—ﬁbﬁ'lg, a’—'Z—rﬁJng (26)
hence
’;e 1 P e
a7 "2 e
@ satisfies a classical propagation equation, and
1
600 = | fitr—an + fe+an ] (28)

HOWEVER, things get more complex for the displacement u = grad ¢. Assume only the outgo-
ing potential f, /r and drop the index 1:

0¢ 1
U, = — =

1
— flr—at) — — f(r—at) (29)
ar r r2
THE DISPLACEMENT FIELD HAS TWO TERMS:

* A far-field term (1st one), which decays as 1/r, and involves the derivative of f (hence high
frequencies);

* A near-field term (2nd one), decaying as 1/r2, and involving lower frequencies.

— The displacement remains in the direction of propagation, since there is no dependence of ¢
(potential) on @ and ¢, and hence uy and u, are identically zero.
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C. CYLINDRICAL WAVES

In cylindrical symmetry, we seek a wave which will depend only on the radial component r, but
neither on elevation z nor azimuth ¢ (again, we change the notation so as not to confuse with the

potential ¢).

Again, we consider a curl-free wave, and seek a potential ¢ depending only on r (and #). The
Laplacian (1_27) takes the simplified form

Lo d¢
leading to
?e 10¢
N SR SO 31
& ¢ or? roor 1

In order to proceed further, we assume a harmonic dependence with time:

p(r,t) = go(r) e (32)
and obtain
¢y 1dpy o
i Tl &9
Defining
R = r»g (34)
and droppping the subscript 0 in ¢ yields
d* ¢ 1 d¢
W + E El—é + ¢ = 0 (35)

which is a Bessel equation (of order zero; Abramowiiz & Stegun, 9.1.1, p. 358), whose solutions
are
¢ = AJy(R) + B Ny(R) (36)

where J, and N (Y, A&S) are the Bessel and Neumann functions of order 0, respectively.

When r, and therefore R, — oo

w2 enle-2) o )]s e = A2 (2] of3)] e

and if one defines the Hankel functions of order 0 and 1st and 2nd types

Ho(R) = Jo(R) + i No(R) ; HY(R) = Jo(R) — i No(R) (38)
the general solution (36) can be rewritten as a superposition of Hankel functions which in the far
field will behave as

¢(r,t) = —g-expiw(t—i)Jr E-expia)(t+£). (39)
VR a VR a

They look like waves propagating outwards or inwards at the velocity e, and with an amplitude
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decaying like VR.

However, at close distances, ¢ will incorporate other terms, and then remember that actual dis-
placements will be given by grad ¢....

B. GREEN’s FUNCTION SOLUTIONS

We now want to address the fundamental problem of the waves excited by an earthquake
source in an infinite HILE medium. Obviously, we have a very long way to go, in particular
because the geometrical representation of an earthquake source involves a double-couple, which
is a very complex combination of forces. In addition, this earthquake source will have a time
dependence, which may be a § function, or a sudden step (Heaviside function H(¢), or perhaps a
slow Ramp Ra(t)...

We proceed by first reverting to Equation (8) and assuming that this "external" force will be char-
acterized by a density of force

f=6x50) & (40)
that is to say that we consider a point source F at the origin of coordinates, and directed along the
axis 1 of a cartesian coordinate system. We know that this is not a proper representation of a seis-

mic source, but we hope to consider this as a Green’s function, and then build from this model
[Aki and Richards, 1980; (4.1) p.64]. We then have to solve

pi — (1+2p) graddivu + pcurleurlu = §(x) & (1) - & (41)

In order to solve this problem, we follow Aki and Richards (pp. 64 sq.), whom we will
largely paraphrase here. The idea is going to be to not only decompose u into a gradient and a
curl, but £ as well, with the hope that (41) will then separate completely into a curl-free equation
and a divergence-free one. This is known as Lamé’s decomposition (and theorem), (A&R 4.1.1

pp. 68—69).
We start by considering the simpler scalar equation
g - o’Ag =660 42)

[This is pretty much as simple as the problem can get: a scalar function for an excitation which is
a combination of § functions in time and space.]

The solution to (42) with zero initial conditions is

| r
gx;t) = 4Ea2’_-5(f—g] (43)

where r is the spherical polar radius to point x: r = yx - x.

The derivation is given in Aki and Richards’ Box 4.1, which is reproduced on Page 9.

Note however the notation ¢ (more general than «).

The fundamental steps in the box are:
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[Aki and Richards, 1980; pp. 65—-66]

BOX 4.1

Proof that

PV x|
9x, 1) = 4mc?|x| 5(1‘ B ?)

s the solution of § = 6(x)5(t) + c*V2g with zero initial conditions

B symmetry, the spatial dependence of the solution can be only on the distance r = x|
from the source, 50 we seek the functional form of g = g(r, ¢). Expressing V2 as a differential
operator in spherical polar coordinates, it follows that

10 dyg 1 g
Vig=— (222 V= 2 _¢(p
g r or (‘ 61‘) r ar? (rg).

Therefore, everywhere excepl at r = 0, rg satisfies the one-dimensional wave equation
rg)” = rj/c* (a prime here denoting 3/dr), and this has the well-known general solution
g = St — rfe) + h(t + r/c). We know that h = 0, because the required solution is out-
Zoing, l.lence it remains to prove that f(r) = 8(z)/(dnc?), ie., that 4nc*f(z) has the same
properties as d(t) when integrated over ranges of time.

We can establish this required result by investigating the function

2
rfctea g0 1) di = 47:'_0 £2 Ty

. —£y

F(r,e1,80) = 4nc2f

rle—z;

Operating with V2 on F, we have to differentiate the limits and the integrand g with respect
to r, finding

t=rlc+ea rlet oz

+ dnc? j V2g(r, £) dt.

rfc—gy

2 2 g
VAF = dme| 29'(n 1) + —g(r, 1) + = (1, 1)
¥ c t=rlc—ry
Substituting ¢*V2g = § — 8(x)3(1), one can carry out the above integral of § to give another
term in g/c in the square bracket above. All these terms then cancel out, since rg = f(t — r/c)
implies ¢’ = —g/r — ¢/c, which leaves

rletes

V2F = —4nd(x) o d(1) dt.
When the right-hand side is integrated over any volume ¥, whether the origin is in V¥
or not, it yields the same result as the volume integral of —4nd(x) [2,, 6(¢) dt. Using the

property VX(1/r) = —4rd(x), it follows that

1 &
F(r e, 82) = = [ 8(0)db.
r £
(F does not involve an additional harmonic function, since such a function would either
add another singularity at » = 0 or violate the property I — 0 asr — oo.) From the second
equality given in the definition of F, we can now see that dnc® {2, f(z) dr = |2, 8(:) dt
for all (g, &2), and hence f(z) is the required delta function.

- Page 9 -
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» Use symmetry to justify that g should be sought in the form

1
glr,t) =— f(t—ric) (44)
>
» Whatever that function f is, consider the integral
rlc+e 4 2 g
Flr,e0,8,) = 4n ¢ J'I et dt = ”’ L f(2) dz (45)
rlc—g —€]

and compute its Laplacian (the end justifies the means...). For given £; and &,, F is just a function
of r, and we can write its derivatives as
dF rletey dg(r, t)

Flr=—= 47:c[g(r,£+62)—g(r,i—gl)} + 47:1;2]
dr c ' '

di 46
'J’C—El ai' ! ( )

L ow_ 98, 98 lldg Ig .
EF = 5(?,”’6+€2)— o (ryrlc—gp) + cliar‘ (r,rlc+ey) 5 (r,rlc—g)) | + 47)

rete 92
* {a—g(r,r/cheg)—a—g(}',f‘/cﬁel)] % C.[ +e 07 g(r, 1) gt

dat ot e — g, dr?
. r” 2 ’
According to (1_33), AF = F'+ - F'. Hence
¥
1 a ) | a t=rlc+ey e
g g ric+ &y
- =|2==(r —g(r, )+ —=(r + ¢ Ag(r, 1) - dt (48
ane AF { =) + gl e —— (]’t)],--/-_ |, Astrn-di @)
It is time to remember that g satisfies (42):
1 7. ;
Ag = —|§-00050 | @2)
which leads to
1 a 1 a t=rlc+e 1 ot
g g e+ &y
—AF = 2| —(r, —g(r, )+ — =—(r,t - —d(x) - o) -dr (48
4rc l: or .0 + r g )+ c ot G f):|f e c () J‘ﬂcge, ) (“48)
=rlc—g

The bracket is identically zero, because of the nature of g in (44), and so

ric+¢&.
AF = —4z 5 [ " 6(r) - dt (49)

ric—g
Remember that F is a function of r, hence of x, and that §(x) is defined by
Sx) =0 if x#0: S(X) = 0o if x=0: J.Raﬁ(x)-d3x=l (50)

If we integrate (49) over the whole space (R3), all contributions outside of the origin (r=0) will
vanish, and the contribution from =0 will be weighted by the integral in (49), taken for the par-
ticular value r=0. Remembering the property

A(%): — 47 5(%) 51)

we obtain
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AF (r, e, ) = A(%)J‘& 5(0) - dr (52)

—£)

Hence

F(re,e) = 1 j_ 5(t) - dt (53)

-
Comparing (44), (45), and (52) shows that

1
£ = 5(1) (54)

47 ¢?

or, reverting to our notation (& instead of c),

1 r
g(x;1) = 4;ra2r-§(r_5) (43)

Q.E.D.

(In going from (52) to (53), follow Aki and Richards for argument against adding a harmonic
function to the integral F, which would violate some obvious properties of the function g .)

—  Aki and Richards’ next three problems (pp. 66—67)

(i)  Move the source in time and space — trivial
1 dt —z —relc)

fi-?hg = 8x-§)-80-D): gD = ” (rg = |x=£) 59
(i)  Give the source a time dependence f(f)
gy —PAgy = S(x—&)- f(1) (56a)

+oo
Then use (55) as a Green’s function, given that  f(f) = j f(£)d(t—7)d7 , toobtain

1 . Flt—=rgie) (56b)

47 c? re

82

0] :
(iii) Expand the source spatially and temporally as a function — (why over p, once again in
P

anticipation...)
D(x, 1)

gy = c*Agy = (57)
This time, consider the double distribution integral
+oco
D(x,1) = j d.r”jcp(g, ) 8(x — &) 8(t — 1) P3¢ (58)
vV

and use (55) and (56b) as Green’s functions to obtain
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ofe, - 1)
3
B = s Hj e (59)

In particular, in the case of a static field, with no time dependence (A&R 4.8 p. 68),

#0x) = 4.1r,o(,2 JJJ |j)(i2| ¢ (60)

— | Aki and Richards’ BOX 4.2 p. 69
This represents a clever way of effecting Helmholtz’ decomposition for a vector Z:

Z =grad X + curlY ; divY = 0 (61)

Let us seek a vector field W such that
= AW = graddivW — curlcurl W (62)
We then see that X = divW and Y = curl W are obvious solutions to (61).

By applying (60), for example to the cartesian coordinates of the vector Z, we obtain

WE) = — — ”J' Iffizl P (63)

In principle, the volume of integration V should be the whole space (R®), but in practice,
it can limited to a finite domain where the source is confined (e.g., the solid Earth).

—  Lamé’s Theorem

We next proceed to proving Lamé’s theorem [Aki and Richards, 1980; (4.1.1) pp. 68 sq.].

For this purpose, we start with the fundamental equation of dynamics

pi="f + (A+2p) graddiva — p curlcurlu (8b)
and we decompose both u and f using the Helmholtz potentials
u = grad¢ + curly (64a)
f = grad® + curl¥ (64b)
divy = divW =0 (64c)

and we similarly decompose the initial conditions u (x;0) and u (x; 0) as

u(x;0) = gradC + curlD (65a)

u(x;0) = grad A + curl B (65b)
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divB = divD = 0 (65¢)

(In most applications, A, B, C,D will be identically zero.)

Then, Lamé’s theorem states that the curl-free and divergence-free parts of the motions are
decoupled in a such a way that (A&R (4.11)-(4.13)):

¢ — atAp = (66 (iii))

(66 (iv))

T|E DS

- Ay =

The proof of Lamé’s theorem is given in Aki and Richards [1980, p. 69] by building the
(admittedly akward) functions (A&R (4.14), (4.15))

¢(x,1) = l jr (t—r)[@(x,r) + (/‘L+2pt)divu(x,r)]-dr +tA + C (67a)
p Jo

vy = — j' (r—r)[‘}‘(x,r) - ucurlu(x,f)]-df +tB+D  (67b)
p 0

Then, A&R (4.12) (divy =0) is indeed trivial to prove.

A&R (4.11; our 64a) is a little more involved. After taking the gradient and curl of (674, b),
use (8b) to substitute i and integrate by parts a couple of times to verify (64a).

To verify (66 (iii)), take a first derivative ¢. It is simply
¢ = %J‘{;[d)(x,r) + (ﬂ+2u)divu(x,r)]dr + A (68)
(the other term cancels out), so that the second derivative ¢ becomes
¢ = %[@(x, 1) + (A+2p) divu(x, t)] (69)

but div u is also Ag, according to (64a) Q.E.D.,
and similarly for (66 (iv)), noting that curlu is also — Ay Q.E.D.

(40).

We are now finally armed to obtain the first major Green'’s function (41) for the single force

We can directly consider a time dependence X(#) (A&R 4.16 p. 70)
f(x) = Xo() 6(x) - & (70)
A direct application of (63) to the case Z =f yields

1
W=-— Xyt) & (71)
drr

B = dyW = _ 208 9 (1) (724)

4r x \r
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_ _X® g, 9 (L) 9 (!
Y= —curlW = — [0, 8x3(r]’ axz(r):l (72b)

What Lamé’s theorem states is that we can seek the curl-free ("P") and divergence-free
("S") parts of the displacements through the equations:

. 5 __XO(f).i(i]

¢ = fg= drp dx \ r \13)
o Ay = K@ g 9 (1) 9 l)
V- B Ay = 4z p [0’ 8;@,(1‘ )’ sz(r S

To solve (73) (with no initial conditions), we revert to (59) and obtain

Xo(r_h(__é_lj
B -1 ' o d _1_ 3
5D = 1o j‘“ P 'ﬁ(lélj ¢ (75)

The volume integral is computed in a system of spherical coordinates centered on the point
x, by integrating separately on spherical shells S, and then radially on the variable
7 =|x - &|/a, leading to:

__ 1 (o Xl-9 9 (1) .
o0 = s L - [HS e (Iél) dsf] dr (76)

In their BOX 4.3 pp.71-72 (reproduced on Pages 14-15), Aki and Richards [1980] show
that this equation simplifies to:

Ixl

-1 Jd 1
M= — | — = | |* tXot-7)-d 77
P(x, 1) pp (axl lle J'O t Xo(t—7)- dt (77)
and similarly for the divergence-free terms:
[x]

I 0o 1 Jd 1
= — |0, — =, —— = || ? s Xy(t-7)-d 78
v = 7 { o o |X|] [P exo-n-de (78

BOX 4.3

Evaluation of a surface integral

We define

d 1
h(x, 7) = -
) |£f 28, g B

and show here that




Geol. Sci. 462 Chapter 2 - Page 15 -

hx, 1) = 0 for v > |x|/e,

but

1
h(x, 1) = dnoc? ) for v < |x|/e.
i

i) Note the physical meaning of the result: suppose there is a uniform surface density on §.
Then ||~ dS is proportional to the gravitational potential of dS at 0, and a[¢|~!/a¢ , dS

is the component of the force in the %, direction. The desired result follows from finding
the total potential at O due to the shell and then differentiating to get the total force
component along X;. The potential inside a spherical shell is constant, and outside the
spherical shell one can find the potential by lumping all the mass into a point at the
center, ie., at x.

g

B, Sphere S
N phere S
{Ix_q:m

ii) Detailed proof: suppose that 0 is at 11, so that we can differentiate with respect to varying
1 and subsequently set = 0. Also take r = |x — i, R = |& — 4|, and 0 as the angle
between x — yand x — & Then

d as
h=— || = i is fixed for all S).
o ‘LI R (since 1 is fixed for all £ on §)

Now choose dS = 2ne2z2 sin § dB-

‘L"f % = 2mo2r? ﬁ)n sin}{: dB.

But R? = y? 4+ 4212 _ 2441 cos 0, so that 2R dR = 2ro sin § d0, and

4dmor if O isinside S (t > rfo)
as 2 =n 2 o
J:f === ;;0:0)) R = ﬂ_ﬁattd AR = < dmp2?
Y R r r ifOisoutsideS (¢ < r/a).
. F
Hence, if O is inside S, :
i)
h=——dnor =0 (x> rfor),
an
and if O is outside S,
dna?c? d
h = _..i T = 41rac2'cz——1 (v < rfw).
o 0%y r
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The philosophy behind BOX 4.3 is as follows.

The surface integral can be thought of as representing the component along coordinate 1
of a "1/r*" attractive field (e.g., gravitational, electrostatic), calculated at the point & = 0,
for a system of charges distributed on the sphere S, with a uniform unit density.

It is well known that the field in question is 0 if the point & is inside the sphere
(|x — €| < @ 1), and equivalent, if the point is outside the sphere (|x — &| = @ 7), to that
obtained by collapsing all the charge (in this case 4za” %) at the center of the sphere,

hence calculating the field as m m

Since the computation is made at &£ = 0, the value of the surface integral in (76) is imme-
diately:

HST =0 (x| < az) (79)

jj = 4rga®7? .
St

—  Then, all that remains to obtain the solution to our problem ("Find the displacement field as
a function of space and time when the force (70) is imposed") is to apply (64a).

B

1

(|x] = ar) (79b)
xp |x]

Qv

Note that even this is far from simple. First, set r = +[x; x;, and note that
or X Jd 1 1 dr —¥j

L P, | D e 80
ox; r ox; r r ox; r3 sl
Then rewrite (77) and (78) by generalizing the index 1 as j (the direction of the force),
obtaining
_ 1 Xj ':;
0,060 = g [T Ko-) e (81)
” , i in |~ T2 ey

Nwn = s [o, X3, ;\2] J'O t Xo(t—1) - dt (82a)

so that the coordinates of y; (created by the force along j) can be written as

! (7

l,l/jk(x,f) = W'Eﬂk X J-O TXO(f—T)'dT (SZb)

Equation (64a) is then written in tensor notation (u; is the i-th component created by a
force in the j-th direction:

ur’j (X’ t) = ¢j,i + Epk ij,m (83)

In (83), there are three contributions from (81)
.

I & (=
M'F'ju ¢ Xo(t—7) - dr (84a)
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r

-3 ijr- G

A Xo(t—7) - d 84b

T e [# 5 Xot-0)- ds (84b)
! B Lo et B bl ) (P (84¢)
SR U R ) — = —m8 — J oz s
drp 1 a”° ar  4dzpar r2 0 o

There are, again, three groups of contributions from (82)

s

l e
e Eimk € jik Xt * J-Oﬁ T Xo(t—7)-dr (85a)
Remembering &, € ji = 8jj 8,y — 0y 6,y; and x;,, = &y, this adds to
,
1 S
;o - 20; jﬂﬁ 7 Xo(t—7)-dr (85a”)
Then
% s
To s e s [0 7 Xm0 - da (85b)
Again, remembering &, € jy = 0jj O,y — Oyt 8, , this adds up to
;
-3 il ’
ppp_ l: 8 Ot X1 Xy — Xi X, ] .[oﬁ t Xo(t—7) - dr (85h°)
so that (85a”") and (85b°) add to
1 3x x; L
4wr3[ ;-’2 L —5,;,-} foﬂ t Xo(t—7) - dr (85a+b)

and finally, the third contribution from (82) is:

1 ’_ Xm

e Eiik € jik X1 > 7 Xo(t—rip) Py (85¢)
Using &,y € i = 6jj Sy — 5y S, 2 final time, we obtain
| Xi X5 r
— | 6 - —2 | Xy - = 85¢’
o (57 0(-5) (®
Regrouping (844, b) and (85a+b), we obtain
1 3 X xJ,- rlp
E| | J"_m T Xo(t—7) - dr (86)
and changing the notation to introduce the direction cosines
x.
% = — (87)

y
we obtain the dynamic Somigliana tensor G;; such that the i~th component of displace-
ment at point X created by a force

f=1f;& d(x) X,(0) (88)
will be given by
ui(x,t) = Gy f; (89)
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Dynamic Somigliana Tensor

1 Yi ¥ r
Gy = —= « Xplt—— | +
T dmpa? r 2 o

& Vo :
PRk (/WA PSS (90)
mp ;

4z p r3

rip
+ . J.Ha T Xo(t—7) - dt

Fundamental properties of (90)

° The first term represents a field propagating from the source at the velocity « of P waves,
and featuring the time history of the source, with an amplitude decaying as 1/r. Note that,
for a given j, u; will be proportional to 7;, and hence u is parallel to x.

. The second term similarly represents a field propagating from the source at the velocity f
of § waves, and featuring the time history of the source, with an amplitude decaying as 1/r.
Note that the scalar product of x with that part of the field will involve the expression
(7; 6j — v; % v;) which vanishes, meaning that the displacement expressed by that term is at
right angles to x.

° The third term is a near-field contribution, which decays faster that the previous ones. If X
has a finite duration in ttime, 7', it is non-zero only between r/a and (r/f+T).
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HOMEWORK 2
. Derive the static Somigliana tensor by considering the case Xy(1) = H(t) (Heaviside
function), and letting t — co.
° Show that the result can be expressed as
1
SU = %'l:giji'," - Q’:U:’ (91)
where
A+
="k (92)
A+2p

NOTE that § is NOT the Poisson ratio...
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Finally,

—  The Double-Couple Solution

Earthquake sources are represented by a system of forces called a double-couple, described by a
moment tensor M given as

M = Mo[aﬁ'f + ﬁflT:| (93)

In (93), d is the unit vector of the direction of slip of the hanging wall with respect to the foot
wall, and fi the unit vector normal to the fault plane, oriented from the foot wall to the hanging

wall.
The superscript T indicates the transposed of a matrix.
M, is the scalar moment of the source (in units of dyn*cm or N*m).

Note
(i)  that the distinction between hanging and foot walls is arbitrary. If they are permuted, both
d and i change signs and M is unchanged.

(ii)  that vectors in (93) are right-multiplied by transposed vectors; the result is NOT a scalar
product, but rather a matrix.

(iii) that d and fi play totally symmetric roles in (93), hence seismic waves generated by a point-
source double-couple cannot be used to resolve the classical indeterminacy between focal
planes ("true" and "conjugate" focal mechanisms).

In order to evaluate the displacement created by a point source moment tensor M, we consider a
single component M, which can be interpreted as representing a single couple of forces F ori-
ented in the p direction, and offset a (lever) length AL in the g direction, with M, = F L, taken in
the limit { L — 0; F — oo; M const}.

The excitation of the displacement field u by the component M, will thus be the derivative of
the Green’s function (90) with respect to the position of the source. Remember that (90) involved
the relative position (x — &) of the field point x and the source &, so that derivatives with respect
to the position of the source & will be the opposite of those with respect to x.

There follows that the field generated by one component M,, of a moment tensor will be
obtained from (90) by considering

~Gipg (94)

which will involve a rather complex combination of terms. Some are direct derivatives of the vari-
ables r and y;; others involve the chain rule applied to the time dependence of the function Xj;
and finally some reflect the bounds of the integral featured in the near field term...

To proceed with the computation, we first recall that
ar  x A% _ SN ©5)

E:T:%’ iju s
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o We first focus on the far-field terms (the first two lines of (90), which we rewrite substitut-
ing j with p), and consider the terms due to the derivatives of the propagation times. They
will be

1 : ; -
i N A P (96a)
drpa’ r o
and
1 (é‘ip % J’I,) ¥q / r
- Xolt——= 96b
4z p p r U os ©o0)

° Next, from the same terms, we have to consider the derivatives of the terms y,, and r. This

yields
1 3 Yi 7[) 7:] - yp é‘r'q — 7% 5;)(; . XO e ’_ (97(1)
4 p a? r2 -
and
1 5ip7/q+5iqyp+5pqyi_37’i7p7’q . X() EHL (97b)
dr p B? r? B

. Then, we have the terms obtained by taking the derivatives of the near field. We start with
the derivative of the integral, which brings:

1 . 3 YiYp¥q — 5r'p yq . XO I—L (9861)
4z p o r? a
and
_ 1 ‘3%'?;)7(;—5@7/(1. X{) f—L (98]))
4z p p? r? B

and follow with the derivatives of the ,, and r terms.

3 31t =Outy =Sty = Op ¥ J'”ﬂ 7 Xo(t—1) - dr (99)
4z p r4 rle

. Regrouping all terms, we note that (97) and (98) combine with the same time dependence,

sop that in the end, we obtain the final Green’s function for a moment tensor component

M ,, with time dependence (including scalar moment amplitude) M, ():
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u; (x,1) =
1 Vi Vp¥y . r
B0 . e fe-—| %
drpa’ r "
1 (51',” =N 7[}) Yq ) M.,,,‘, ‘- f_) +
4r p 3 r
1 6 YiVp¥Yeg —¥p 5:’4 — % 511(,1 e 5:',') i M.,w ({ _ r J 5
4z p a? r2
1 25|'p }’q+§iq ¥ +5pq7/i _6}’1'7/,0 Yy i Mpq (I— LJ +
4z £ ﬁz r?
3 5

4 p

; — F; - ,—5” ; rip
Yi¥p¥q — %p 7’;{4 igYp ~ %pq Vi J‘rm T M, (t-7) - dt

(100)
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Note that, in general, the actual displacement field for a seismic source would have to be summed
over all components of the seismic moment tensors, which means at least two, on account of the
symmetry of (93).

__)

In these formula, note the presence of several kinds of terms:

The first two terms, highlighted in red in (100), are prominent in the far field, since they
decay in 1/r. Furthermore, they feature the time derivative of the history of the moment
release at the source. Given that this history is basically in the form of a step-function fea-
turing a permanent deformation, the far-field will be in the form of an impulse. More gen-
erally speaking, these terms will be high-frequency.

Of course, the first red term represents a P wave and the second one, an § wave.

The next terms, highlighted in blue in (100), decay faster, in 1/r%, and feature the same time
dependence as the moment release at the source. Thus they will prominent at closer range,
and will be lower-frequency. In particular, they will induce a permanent deformation.
Obviously, the first blue line has the properties of a P wave (causality, u parallel to propa-
gation), while the second one has those of an § wave (causality, u perpendicular to propa-
gation).

The final terms, highlighted in green in (100), are more complex. They involve an integral
of the moment release, and as such are expected to be lower frequency. In this respect, it is
interesting to explore them in the case of a step function history for M(¢):

M, (1) = My - H(t) (101)
where H(t) is the Heaviside function (H(t)=0 for t < 0; 1 for ¢>0).
Then,
rhg (—rla
I = _[_m tM, (t—7)-dzs = L_ﬂﬁ (t—6)- H©) - do (102)

If t<rla, i.e., if the P wave has not yet arrived, all @ in the integral are negative, and thus
this term is zero (not surprising in terms of causality).

If t>7/B, ie., if [both the P and ] the S wave[s] has [have] arrived, all & values in the inte-
gral are positive, and thus

2

P g 2001 1
I= .[:-r-fﬁ (t=0)-do = .[,.;a Ry = f(ﬁmﬁ] (103

is a term independent of ¢ and thus static. Note that it grows like r2, but is divided by r* in
(100), so that in the end, it decays like 1/r2.

For long enough t, the only contribution of the green terms is to change the amplitude of
the blue ones, so that the "near field" should be considered to be the combination of the
blue and green terms.

With this in mind, it is fundamental to understand that

e The displacement field created by a moment tensor has two fundamental components: a
high-frequency far field mirroring the derivative of M(t) and decaying like 1/ and a

low-frequency near field mirroring M(t), but decaying like 1/r?
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—  An interesting formulation of the far-fields terms of (100)

Consider first the far-field terms of the P wave, and separate the time dependence of the
moment tensor:

M) = M- Xo(1) ; M,, (1) = M,, - Xo1) (101)
We can rewrite the far-field P wave as
P - -1-X0(rﬁij[y,M, y]y (102)
drpad r a B=R YR
or, defining # = ¥, &;
WP () = L -1-}(0(;—1)-;7 L <3TM > (103)
drpa® r a
where
RP = <9"Myp> (104)

representsa  FAR—FIELD P—WAVE RADIATION PATTERN

varying from -1 to +1,

these values being reached only if # is a principal direction of M.

R” represents the scalar product of # with M 7.

Similarly, the far-field S wave can be written as:

RIS S S A 5 SRR,
W) = Xo(t a} [7xmpxp) | (105)

Since u®f" has a degree of freedom in its orientation, it is not possible at this stage to
define a simple RS . Nevertheless, (105) introduces the concept.

Note that (104) and (105) cannot be simply combined into a single vector equation, because
of the different terms (& and #*) in the denominator of their first RHS terms.
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HOMEWORK 3
. An explosion can be described by an isotropic moment tensor

M,, = My 5, (106)

Show that an explosion generates no S waves in the far field, no S terms in the (blue) near
field and no near field (green) terms in (100).



