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Chapter 1

Review of some mathematical tools

1. Curvilinear Coordinates

. The most important thing to realize about curvilinear coordinates is that, contrary to carte-
sian ones, they are not directly related to distance; in particular since some of them repre-
sent angles, they are dimensionally different.

If you change a curvilinear coordinate & by an amount de, then the relevant point in space
moves by an amount (length)

dl = h,-de )

In the case of standard cartesian coordinates x, y, z, all h’s are equal to 1. For a system of
polar coordinates in 2-dimensional space, h, =1, but h,; =r. Note again the different
dimension of those two coefficients.

The h’s are fundamental to all vector operations and calculus in curvilinear coordinates.

. The second important point to realize is that the unit vector frame changes from point to
point in space, so that vector calculus becomes more delicate.

—  Cylindrical coordinates
In a cartesian frame (x, y, z), we keep the coordinate z, and we use a system of polar coor-
dinates in the plane (x, y):

ro= \x2+y%; ¢ = ATAN_Z[y,x:I 2

where the FORTRAN function ATAN_2(y, x) is the argument of the complex number
(x + i y); note that it is defined mod 27, as opposed to the function tan™' (y/x), which is
defined mod 7.
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Conversely,

X = Fr-cos¢; y = r-sing ; zZ =2 (3)

In cylindrical coordinates, the values of the parameters / are:

h, = 1; hy = r; h, = 1. 4

—  Spherical coordinates

They are defined by giving the distance r of the point to the center of the system, as well as
the two angles characterizing its co-latitude ¢ and longitude ¢ on the sphere of radius r,
with respect to a [North] pole (¢ = 0) and a primary meridian (¢ = 0). Note that the geo-
graphic latitude A is simply z/2— 6. The co-latitude @ varies from 0 to 7z, the longitude ¢
over a 2z interval (usually O to 27, but it could be —z to +7).

When the polar axis is oriented along the positive Z axis, and the primary meridian is in the
plane perpendicular to the ¥ axis, spherical coordinates are given by:

r = \x2+y?+z2

6 = cos! !i (5)

¢ = ATAN_2[y,x]

Conversely,

x = rsin@cosg; y = rsin@sing; 7 = rcos@. (6)

As for the parameters h, they are given by

h, = 1; hg = r; hy = rsing. @)

The fact that i, and h, are not equal expresses the familiar difference in length between a
degree of latitude (always equal to 111.195 km at the surface of the Earth) and a degree of
longitude, which decays like cos A (sin #) when approaching the poles.

We can also define vectors &,, &, and €, which are unit vectors in the direction correspond-
ing to a [positive] increase in r, @, or ¢, respectively. Once again, this frame of vectors
depends on the particular point where it is computed.
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Transformations of vector coordinates

We consider a field of vectors V (M) computed at a variable point M. In cartesian coordi-
nates, this field is given by

V=veé& +v8e +v,€ =18 (8)
using tensor notation (summation implied over the dummy index ).
In curvilinear coordinates, we write similarly

V=v8 + vy + 1,8 = v, & &)

using tensor notation (summation implied over the dummy index e; Greek indices will
refer to the curvilinear system, latin ones to the cartesian system).

In order to obtain the components v, from v; (and conversely), we equate (8) and (9), and
we express the €; as a function of the &, (or conversely). For example, by taking the scalar
product of (8) and (9) with &,, it is easy to show that

ve = e ] + v (68 + vt é.| (10)
and more generally, that
Vi = Qig Vg (11)

where a;, is the scalar product between the unit vectors €; in the cartesian frame, and €, in
the curvilinear one. Because this is just the cosine of the angle between the two unit vec-
tors, in other words because scalar products are permutative, one also has

Vg = Qig Vi (]2)

with the same coefficients a (but this time the summation is over the greek index o rather
than on the cartesian one i.

More generally, a second order tensor T (e.g., a strain or stress)will transform as
fap = Gig Ajp lij; lij = Gig Ajglap (13)

and a N-th order tensor as

tapy..p = Qig Qjgovvnn Asp i ....5 (14)
there being the same number N of latin (i, - - -, 5) and Greek (e, . ..., p) indices.
Direction cosines for cylindrical coordinates
Ay, = COS¢; Ayy = —sing; a., = 0;
ay, = sing; (yy = COSP; ay, = 0; (15)
a,, = 0; a.y, = 0 a,, =1

Direction cosines for spherical coordinates

a,, = sind cos¢; yp = COSO COSP; Ay = —Sing; (16a)
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ay, = sin@sing; dyg = cOsB sing; Ays = COSP; (16b)

a,. = cosd; a,o = —sing; a9 = 0. (16¢)

Z

. Vector calculus

Our goal here is to express the vector operators (grad, curl and div) using both the curvilin-
ear components of the vector fields, and derivatives with respect to those coordinates. All
formule are derived from intrinsic definitions of the vector operators

—  THE GRADIENT

The gradient of a function f is a vector such that upon displacement of the argument point
of the fucntion from M to M + dM, the function varies by

df = grad f - dM (17
In cartesian coordinates, dM = dx; &; , hence
d :
(grad f); = a—f = fi (18)
Xi

But in curvilinear coordinates 11, dM = dx, - hy €, , so that we now have

1 of 1 .
o fo  (nosummationon ) (19)

(grad f), =

— THE CURL

To find (curl V), , we apply Stokes’ therorem to a little block of iso-coordinates in the f—y
plane (@ = cnst):

I, = cﬁc V.dM = .[.[5 (curl V), - dS (20)

M (ﬁ rdp g/

.PC{A/} Neole thal ¢ AB= I/LJ()[P

e e

A BD = LLK([SVAF&, b))
(RY) r /G‘*é{ﬁ;,b/) DE = = hp (p, Y+ dY)

+ In tensor notation, an index (or several indices) placed after a comma means derivation with respect to that variable.

171 In tensor notation, underlining an index means no summation over that index (or in the case of a product of three
indexed terms, a simple summation over that index, of the result of the product).
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It is easy to show that

Iy = vg(B.y) h(B,y)dB — V(B y+dy) hp(B,y +dy) dp 21

+ V (B+dB.y) hy(B+dB,y) dy — V,(B,¥) hy(B,y) dy
which yields;
hg hy a4 dy

There are no summation conventions in (21) or (22), and the permutation [, 3, ¥] needs to
be direct.

(curl V), = (22)

—  THE DIVERGENCE
Similarly, we use Stokes’ theorem to express the budget of the flux of the vector through a
little cube obtained by incrementing the three curvilinear coordinates.

1 d (hghyvy)
di = r2
ki %" ho hg by da

(23)

In this equation, tensor notations are not used; The sum is over the three values of the coor-
dinate ¢, and for each value, § and y are the other two coordinates.

—  VECTOR CALCULUS FORMULAE FOR CYLINDRICAL COORDINATES

A _1af, o
@adf), = 570 @adf), = 5o @adp.=To Q9
1ov, dv,
(Clll‘l V), = ’— ﬁ—‘g » (2561)
dv, dv,
(CIJI'IV)¢ = E—a—’ 3 (25[))
i 1 a(rvy) dv,
(curlV), = r[ 5 T ] (25¢)
d]VV = la(rv,.) 4 1 avc} + avz (26)

P r d¢ dz

The Laplacian of a scalar function f is obtained from A f = divgrad f :

Lo ( of 1 9*f 9*f
Af‘?aT(’aT)+ﬁTﬁ+§z? | G
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The Laplacian of a vector field V is defined as

AV = graddivV - curlcurl V (28)

and can be written as a function of the Laplacians of its components:

(AV), = A(v,) — ‘—2 - %aaT: : (29a)
(AV), = A(vy) - % + %%; (29h)
(AV), = A(v) . (29¢)
> VECTOR CALCULUS FORMULAE FOR SPHERICAL COORDINATES
@adp), = 30 uap, =13 gmap, - 5L
(curl V), = - S:ne{ a("g’:“ o) _ %V; ]; (3la)
(curl V), = :ng %—‘;)- — ?1 8(5:¢) ; (31b)
(curl V), = %[a(g:f’) —%]. 31e)
W 1 a@r*y,) .\ 1 9(vysing) N 1 dv, 32)

2 or rsin@ a6 rsing dg¢
The Laplacian of a scalar function f is, again, obtained from A f = divgrad f :
1 d af 1 d of 1 0 f
Af = ——|rP= |+ 0= |+ —— = 33
I =25 (’ ar ) 2 sin6 ae(s‘" aa) 12 sin? 0 g2 s

The Laplacian of a vector field V is written as a function of the Laplacians of its compo-

nents:
3 2 1 d(sin@ vy) 1 dvy |
(LAY = Ll ]_—2|:v,. % sin 6 08 sin@ d¢ |’ (34a)
2| dv, Vo cos@ dv,
AV), = A —| = - - ; 34b
(AV)e (vo) + rzl 06 2sin*@ sin’0 d¢ :I G4)

(30)
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_ 2 av,. an V¢
(AV)¢ = A(\f¢) + m %+00t9 a¢ ZSiHQ:I' (346)

—  APPLICATION TO STRAINS
Strains are second order tensors, so that they will transform according to (13)

EO!,B = iy ajﬁ gij (35)

Now, remember that

1 1
81-j = E(u,-,j+uj,,-) = E(VU'FVJ;‘-] (36)

where we define v; = u; ;.

To compute v, 4 as a function of the u, and their derivatives, simply write:
Vop = Qig@jg Ui j = Qigdjg (ciy 1) 5 (37)
and then invoke the chain rule to obtain

axg

Vapg = Qig ﬂm(a-;y My),g . E (38)

aJ.fg‘
Vaf = g Bjgp| Fip Py 8 Ty flly | 5
J

It is time to remember the definition of the parameters a, and in particular a;, a;, = &4y,

so that
0 Xy
Vap = (“m Ua,¢ + Qi Gjp Biy ¢ Uy ) P (39)
.|
; ; : d Xe o,
Fortunately, most of the terms regroup or vanish; in particular, a ;4 - T is the f—compo-
X
i

nent of the gradient of the function x, (computed in the cartesian frame, and then rotated

onto the S axis). Hence, it is just E - Xz, p (no sum). But the derivative x; g is obviously

the Kronecker &, 5, so that

1
Vag = E[ua’ﬁ + a;, a,-y_ﬁu,,] (40)

We give an example of the full derivation of the strain component &,, in spherical polars,
and then the full expressions (without proof) of all the strain components in cylindrical and
spherical polars.

. Compute €, in spherical polars

Recall: 2 ¢, = v,9 + vg,. Then
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(41)

Obviously (see Eq. (16)), none of the a;, depend on r, so the second term in (40) vanishes.

As for v,,, it is given by
Vg = - U, g + Qi iy gty [T

Let us compute the sums (over i) a;, a;, 4 for all three cases of y:

For y = r, this is

b= x: cos # cos ¢ sin @ cos ¢
i=y: cos @ sin ¢ sin @ sin ¢
i=z: —sin@cosf
The sum vanishes.
For y = @, this is
i=x: — sin @ cos ¢ sin @ cos ¢
i=y: — sin @ sin ¢ sin @ sin ¢
i=z: —cos fcosé

The sum equals —1.

For y = ¢, all three terms are zero.

In the end

(42)

(43rx)

(43ry)

(43r2)
(430x)
(430y)
(4367)

(44)

More generally, here are the formula for all strain components in cylindrical and spherical

polars:

CYLINDRICAL POLARS

(45a)

(45b)

(45¢)

(45d)

(45e)
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1
2£¢Z = ”¢,Z + FMZ’Q}

—  SPHERICAL POLARS

SH = u? ¥
1 u,
Egg = — Mg‘g + "_.
N u, N cot@
£ = —u iU
] Fsin@ (N r 4
1 iy
289 = Uy, + — U g — —
r r
1 i
2¢€., = Uy , + —— U, s
& R rsing ? r
) 1 N 1 cot@
Epy = — U - u - —1u
o r 4d rsing o7 r 4

- Page 9 -

(45/)

(46a)

(46b)

(46¢)

(46d)

(46e)

(46f)
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2. Steepest-descent and saddle-point approximation

The computation of the integral
J@) = [ es IO )

can run into significant computational problems when z is large and the product z- f has a large
imaginary part. Small variations in ¢ can then cause Im (z f) to oscillate fast. Such fast oscillation
means that contributions to the integral change their phase very rapidly with ¢, and the process
becomes unstable in a numerical computation.

The steepest-descent method constitutes an attempt to compute the integral on a contour along
which most of the contribution to the integral comes from a point where Re (z f) is large and
Im(z f) stationary. (It can be shown that the two go together). Then, away from this point,
Im(z f) does oscillate, but the amplitude of Re (z f) is small.

. LEMMA

The modulus, real, and imaginary parts of an analytic function f(z) cannot have abso-
lute extrema in the complex plane.

Proof:

Let f = u +iv, uand v real. Suppose that u has a maximum at z = z,. Then con-
sider a small circle T" around z, and compute the residue integral

f@)

' z—2p

I =

B = jj L GtdRdd = 207 Fled (48)

according to the residue theorem.

If z; is an absolute maximum for u, it means that there exists a combination of a small
strictly positive number ¢ and of a small number p such that

lz—2zo| = p = wu(zg) — u(z) 2 >0 (49)
If we take T" as the circle centered on z, with radius p, then
27 u(zg) = Im(I) < 27 (u(zg) — ) < 27 u(zp) (50)

the last inequality being strict, and so (49) is absurd.
The same would occur for the imaginary part, v, of f, and for its modulus.

. Now, we go back to the integral (47), and we assume that there exists a point (or several
points) ¢ = ¢, where f is stationary (with respect to t), i.e., that its derivative vanishes:

i = % =0 fort=1 (51)

Then, according to the lemma, for all values of the complex number z, the real part of the
argument of the exponential in (47), Re (z f(t)), must have a saddle-point (with respect to
1) at t = ty, since at constant z, it is stationary, but it can have neither a maximum, nor a
minimum. Around this point, and for a given z, we can write :
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1
zﬂo=sz)+§szw«nmf+ ..... (52)

Whatever the countour of integration C was in (47), we can deform it while still going
through ¢.

In the vicinity of f, and in the complex plane, we consider different directions for the com-
plex number §t=t—1t,. If 5t is taken in the direction of the complex number

-12

[z f7 (t) , or the opposite direction, then the real part Re(z f(f)) increases fastest
away from t,, and the imaginary part Im(z f(f)) is stationary. At right angles from those
directions, Re (z f(¢)) decreases fastest and Im (z f(r)) remains stationary. Along the bisec-
tors, Im (z (1)) would change fastest and Re (z f(f)) would be stationary.

We consider the path along which Re (z f(¢)) decreases fastest, and setting
z = |z e (53)
we define the new variable of integration

T =N —el? fU () (t-t) (54a)

(t —tg)* = — 72 et : (54b)
7 (to)

d
Bom e T (54¢)

N —e'? f7(t)

Hence, the approximate value for J
z f(ty) el

- . 2 ° . d 55
e >

the contour C’ being forced to feature real values of 7, at least in the vicinity of #;.

J(z) =

If | z| = oo, the integral becomes more and more concentrated around 7 = 0 and takes the

value \2 7 /| z|. Finally

172
2r 2r :
I = W AT~ = . |3 et (50)
-z f7 () z f7 (ty)

where y is the argument of 1/A/ —z f” (ty), which in other words is exactly the argument of
the steepest-descent path where 7 is real (53).

This reproduces Formula (10) p. 205 (BOX 6.3) of Aki and Richards [1980] in the case
F@)=1.



